
REPORT DOCUMENTATION PAGE Form Approved

OMB No..070*413*

tGtSaU5tOMLY».,^M.-M I-, I ^WI-WW«,»,, OC iOWJ. (I AGENCY USE ONLY (Ujy, blink)"

•*. TITLE AHO SUBTITLE

2. REPORT GATE
5/16/95

3. REPORT TYPE ANO OATES COVERED 9/30/93^
Final Tenhn-^ n 4/30/95

IMAGE UNDERSTANDING RESEARCH.IN COMPLEX ENVIRONMENTS

«. AUTHORS)

R. Nevatia
G. Medioni
K. Price

7. PERFORMING ORGANIZATION NAME(S) AND AOORESS(ES) ~"
University of Southern California.">;.:'; ■ ■ -/■.:■;
Institute for Robotics & Intelligent Systems
Powell Hall 204

Los Angeles, CA 90089-0273

BQT^V-1-
5. FUNDING NUMBERS

•F49620-93-1-0.620

AFOSR-TR-95

3. SPONSORING/MONITORING AGENCY NAME(S) AND AOOR£SS<ES) ~
Advanced Research Projects Agency •*- ■ ■ '
3701 No. Eairfax Drive,' Arlington-, VA 22203^1711

Air Force Office_of Scientific/Research
Bldg. 410, Boiling AFB, DC 20332-6448 O ^

11- SUP1>UMENTARY NOTES

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

12a. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release;
Distribution is. unlimited

13. ABSTRACT (Maximum 2QQ words) ~~" __^__^

DTIi QUALITY INSPECTED 3

, SUBJECT TERMS '■ " —— — —

Computer vision; object rec^iUw^säitual grouping;'
range image analysis; navigatipn^.gejieric object recognition

17. SECURITY CLASSIFICATION
OF REPORT
Unclassified

18. SECURITY .CLASSIFICATION
Of THIS JAGE"'-1 'W^t'- ' ^ "

- m vUnpias^.i-f-ied.v-'--------
NSN 75-10-01-280-5300

13. SECURITY CLASSIFICATION
.OF ABSTRACT

• • v-önc-1-assified

15. NUMBER OF PAGE5

16. PRJCE COOE

20. LIMITATION OF ABSTRACT

Unlimited

Scancard form 298 (R«v''.?-sqi

Image Understanding Research in
Complex Environments

Grant No F49620-93-1-0620 p. 5

Final Technical Report \ \

September 30,1993 to April 30,1995 v

DARPA Order A.O. 7515/00 ';.

Program Code 0E20 |

Contractor: University of Southern California \,

Start Date: 9/30/93 %

Principal Investigator: Ram Nevatia y.-.>

(213)740-6427

Program Manager: Abraham Waksman

(202)767-5025

R. Nevatia , G. Medioni and K. Price (Editors)

Institute for Robotics and Intelligent Systems

School of Engineering

University of Southern California \

Los Angeles, CA 90089-0273 %

May 1995 %
In

Sponsored by Advanced Research Projects Agency ARPA Order No. 7515/00 3
Monitored by AFOSR Under Grant No F49620-93-1-0620. J

The views and conclusions contained in this document are those of the authors' °"
and should not be interpreted as necessarily representing the official policies or en- */»
dorsements, either expressed or implied, of the Defense Advanced Research Projects
Agency or the U.S. Government.

19950727 010

Table of Contents
1 Introduction 2

1.1 Analysis of Range Images 2

1.2 Object Descriptions from Intensity Images 2

1.3 Object Recognition 3

1.4 Indoor Navigation and Dynamic Scene Analysis 3

2 Description of Complex Objects from Multiple Range Images 5

2.1 Introduction 5

2.2 Related Work • • 7

2.3 The Inflating Balloon Model 8

2.3.1 The Correspondence Problem .8

2.4 A Simplified Dynamic Model 10

2.5 Spring Force and Inflation Force 11

2.6 Subdivision and Adaptation of the Triangular Mesh 11

2.6.1 Adaptive Triangle Mesh Subdivision 12

2.6.2 Algorithm 1 13

2.6.3 Algorithm 2 13

2.6.4 Local Mesh Adjustment 13

2.7 Description of the Algorithm . 14

2.7.1 Algorithm 3 15

2.8 Setting up the Parameters 15

2.9 Adaptive Local Fitting, Holes and Noise 16

2.10 Test Results 17

2.11 Conclusions and Future Research 18

2.12 References 22

2.13 AppendixThe Line-Surface Intersection Algorithm 23

3 Surface Approximation of Complex 3-D Objects 25

3.1 Introduction 25

3.2 Parti: Genus 0 surface fitting .26

3.2.1 Issues 26

3.2.2 Algorithm 27

3.2.3 Initial guess . 29

3.2.4 Parameters 30

Final Technical Report

J Am

'\\

a
a

aad/W.

3.2.5 Summary 31

3.2.6 Experiments 32

3.3 Part 2: Surface fitting for complex objects 33

3.3.1 Issues 33

3.3.2 Algorithm 35

3.3.3 Experiments 36

3.4 Discussion 37

3.5 Future work 39

4 Surface Approximation of a Cloud of 3D Points 43

4.1 Introduction 43

4.2 Description of our approach 45

4.2.1 Global parameters 46

4.2.2 Surface Representation 46

4.2.3 The Powell minimization procedure 47

4.2.4 Coarse-to-fine approach 47

4.2.5 External energy Eext 48

4.2.6 Internal energy Eint 51

4.2.7 Choice of the initial surface 52

4.3 Overview of our algorithm 52

4.3.1 Issues 52

4.3.2 The algorithm 53

4.3.3 Summary and discussion 55

4.4 Details of our algorithm 57

4.5 Experiments 63

4.6 Discussion 72

4.7 References 74

5 Recovering Surfaces, 3-D Intersections, and 3-D Junctions 77

5.1 Introduction 77

5.2 From 2D fields to 3D fields 78

5.2.1 Combination per site - The 2-D case 79

5.2.1.1 Justification-The 2-D case 79

5.2.1.2 Detection of Junctions 81

ü Final Technical Report

5.2.2 3-D fields 82

5.2.2.1 The construction of the Patch Extension Field 82

5.2.2.2 The curve segment Extension Field 82

5.2.2.3 The 3-D Point field 83

5.2.3 Directional Convolution 84

5.2.4 Combination at each Site 84

5.2.4.1 The 3-D case 84

5.2.4.2 Combination per site for the Point field - 3-D case 86

5.2.5 Noise tolerance 87

5.3 Results 87

5.3.1 Noise tolerance •• 91

5.4 Conclusion 97

5.5 References 97

6 From an Intensity Image to 3-D Segmented Descriptions 99

6.1 Introduction 99

6.2 The Part Level 102

6.3 The Object Level 104

6.3.1 Properties of Joints 104

6.3.2 End-to-end joints. 105

6.3.3 End-to-body joints 105

6.3.4 Detection of Compound Objects 106

6.4 Detection of Joints 107

6.5 Identification of Multiple Interpretations 108

6.6 Completion of Descriptions. 109

6.7 3-D Shape Recovery Ill

6.8 Discussion and Conclusion 112

6.9 References for Chapter 113

7 Extraction of Groups for Recognition 117

7.1 Introduction 117

7.2 Going from Edgels to Groups 118

7.2.1 Preprocessing 118

7.2.2 Super Segments 120

Final Technical Report iii

7.2.3 Parallels 120

7.2.4 Symmetries 120

7.2.5 Closures 121

7.2.6 Efficient Implementation through Proximity Indexing 121

7.3 Selection of Relevant Groups 122

7.3.1 Aggregation of Groups into Sets: 122

7.3.2 Selection of sets 123

7.4 Representation and Matching 123

7.4.1 Analysis 126

7.5 Results 127

7.6 Conclusion 129

7.7 References 129

8 Pose Estimation of Multi-Part Curved Objects 133

8.1 Introduction 133

8.2 Representations 134

8.2.1 Image Objects 134

8.2.2 Model Objects 136

8.3 Pose Estimation 136

8.3.1 Coordinate Systems and Pose Parameters 137

8.3.2 Establishing Correspondences for Single-Part Objects 139

8.3.2.1 SHGCs 139

8.3.2.1.1 Non-linear SHGCs 139

8.3.2.1.2 Linear SHGCs 141

8.3.2.2 PRGCs 141

8.3.3 Establishing Correspondences for Multi-Parts Objects 141

8.3.4 Solving for the Pose Parameters 142

8.4 Conclusion 144

9 Representation and Computation of the Spatial Environment. . . 147

9.1 Introduction 147

9.2 S-map 150

9.2.1 Definition of the s-map 151

9.2.2 Characteristics of an indoor environment 151

iv Final Technical Report

9.2.3 Viewing triangle constraint 152

9.2.4 Stability constraint 154

9.2.5 Algorithm for making the s-map 155

9.3 Discussion of the s-map 157

9.3.1 Complexity of the s-map 157

9.3.2 Reliability of the s-map 158

9.3.3 Advantages and disadvantages of the s-map 159

9.4 Results 159

9.5 Conclusion 161

9.6 References for Chapter 161

10 A Method for Recognition and Localization of Generic Objects. . 165

10.1 Introduction 165

10.2 Significant Surface Representation 168

10.2.1 Primitives of a Significant Surface 168

10.2.2 Perceptual Grouping to Detect a Significant Surface 169

10.3 Recognition of Doors 169

10.3.1 Detecting a Door Frame 170

10.3.2 Detecting a Door Panel .171

10.3.3 Finding Functional Evidence 172

10.3.4 Localization of a Door 172

10.3.5 Results for recognition of Doors 172

10.4 Recognition of Desks 172

10.4.1 Detecting a Desk Top Surface 173

10.4.2 Detecting Legs 174

10.4.3 Finding Functional Evidence 176

10.4.4 Localization of a Desk 176

10.4.5 Results for Recognition of Desks 176

10.5 Complexity of the Recognition System 179

10.6 Conclusion . 180

10.7 References 180

11 List of Publications 183

12 Professional Personnel 185

Final Technical Report

vi Final Technical Report

Preface
This report summarizes research for Grant No F49620-93-1-0620 for the 19

months from September 1993 to April 1995. We give a general overview of the work
in the introduction with more detail provided in later chapters.

Final Technical Report

1 Introduction
We have undertaken a broad range of research for developing image under-

standing techniques to infer 3-D shape descriptions of the scene from sensed data
which may consist of monocular images, stereo pairs, motion sequences or range data
(such as from LADAR), to recognize the objects in the scene, and to keep integrated
temporal descriptions in dynamic scenes. These activities are central to almost any
IU application task such as target recognition, photo-interpretation, navigation and
object manipulation. Much of the past work in IU attempted to find solutions to these
problems in highly specialized domains. While this approach may be necessary for
some short-term applications, it requires extensive development for each new task.
Worse yet, such techniques fail to be robust for the specific applications, as the limit-
ing assumptions are easily violated. Instead, we follow an approach of generic vision
that applies to large classes of objects and scenes and is based on broad and generic
assumptions. We also use mathematically rigorous constraints derived from the ge-
ometry of the image formation process.

This chapter gives a brief outline of our work over the last 18 months with ref-
erences to the later chapters of this Final Technical Report.

1.1 Analysis of Range Images

The goals of our effort in Range image understanding are to generate rich de-
scriptions from sensed 3-D data. These descriptions should be segmented and capture
both the volumetric and surface information related to objects. One of the applications
is the automatic generation of 3-D models from multiple range images. We describe
in more detail four specific aspects of our research:

• the integration of multiple range images into a surface representation of the
object (in Chapter 2)

• a framework to handle complex objects with holes or multiple components (in
Chapter 3)

• an approach to generate volumetric part descriptions from a surface represen-
tation of an object (in Chapter 4)

• the inference of surface shape from sparse three-dimensional data using per-
ceptual organization (in Chapter 5).

1.2 Object Descriptions from Intensity Images

This is one of the most difficult, but important, tasks in IU. Scene segmentation
is difficult, as different types of features such as object boundaries, surface orientation
isocontinuities, surface markings, shadows and noise cannot be directly distin-

Final Technical Report

guished. We use a process of perceptual organization to compute the higher-level de-
scriptions in such cases. To be generic, perceptual grouping methods must use general
methods. One method propagates the influence of local features over large vector
fields and finds the most salient features. For higher level groupings, we use methods
based on utilizing projective properties of contours of a class of objects. We have cho-
sen generalized cylinders (GCs) as suitable volumetric representations. A few types
of GCs (and their combinations) can represent a large fraction of the man-made ob-
jects in our environment. In recent research, we have developed some very powerful
invariant (and quasi-invariant) symmetry properties of projected contours of GCs.
Our studies indicate that we can use these properties to segment objects, fill gaps
even in presence of occlusion and infer 3-D shapes from monocular images. This is de-
scribed in more detail in Chapter 6.

1.3 Object Recognition
Most object recognition systems today address the problem of finding the loca-

tion and orientation of an exactly known rigid object in a scene.However, these ap-
proaches cannot be extended to more general scenarios because objects may be very
similar while being geometrically different. Consider for instance two different air-
planes which have similar features but different geometries. In other words, generic
recognition should not make use of methods based purely on the exact geometric
structure of the object. It is clear that the only way to solve this difficult problem is to
reason about parts and their arrangements.We describe two aspects of our research
designed to achieve this difficult goal:

• the generation of rich, stable descriptions from images, and the use of percep-
tual grouping laws to achieve this task (see Chapter 7)

• the development of an alignment-like pose estimation technique for multi-part
curved objects (see Chapter 8).

1.4 Indoor Navigation and Dynamic Scene Analysis
We have been developing a vision system for indoor robot navigation. This sys-

tem is based on a Denning mobile robot with a trinocular vision system. Our objective
is to use generic descriptions of the path (go past the desk on your right and go
through the first open door) rather than a detailed specific map. Currently our robot
is able to navigate in laboratory environments avoiding obstacles and using objects
such as doors and desks for landmarks.

We have also studied the problem of navigation in an environment which we
model as we go. Specifically, we consider the problem of building a model of a scene,
so that a similar sensor could, at a later time, orient itself with respect to this repre-
sentation. We describe two aspects of this work in navigation:

• the representation of the spatial environment for indoor navigation (see Chap-
ter 9)

Final Technical Report

the recognition and location of generic objects (see Chapter 10).

Final Technical Report

2 Description of Complex Objects
from Multiple Range Images Using

an Inflating Balloon Model
Yang Chen and Gerard Medioni

We address the problem of constructing a complete surface model of an object us-
ing a set of registered range images. The construction of the surface description is car-
ried out on the set of registered range images. Our approach is based on a dynamic
balloon model represented by a triangulated mesh. The vertices in the mesh are
linked to their neighboring vertices through springs to simulate the surface tension,
and to keep the shell smooth. Unlike other dynamic models proposed by previous re-
searchers, our balloon model is driven only by an applied inflation force towards the
object surface from inside of the object, until the mesh elements reach the object sur-
face. The system includes an adaptive local triangle mesh subdivision scheme that re-
sults in an evenly distributed mesh. Since our approach is not based on global
minimization, it can handle complex, non-star-shaped objects without relying on a
carefully selected initial state or encountering local minimum problem. It also allows
us to adapt the mesh surface to changes in local surface shapes and to handle holes
present in the input data through adjusting certain system parameters adaptively.
We present results on simple as well as complex, non-star-shaped objects from real
range images.

2.1 Introduction
The task of surface description using 3-D input can be described as finding a fit

of a chosen representation (model surface) to the input data. This process can be for-
malized in a number of ways involving the minimization of a system functional that
explicitly or implicitly represents the fit of the model to the input data. Another very
important aspect of such a system is to construct a mapping or correspondence be-
tween the surface of an object and the structure of the model. This mapping exists be-
cause the surface of the model and the surface of the object are topologically
equivalent, considering genus zero type of objects. Therefore there exists a one-to-one
mapping between the model structures and the object surface elements. Previous re-
searchers have studied such mappings in a variety of ways using different represen-
tation schemes and model fitting methods. Examples of these approaches include the
dynamic system using energy minimization in [4] and the dynamic mesh in [12] and
[13]. The drawbacks of these approaches is that they must rely on an initial guess of
the model structure which is relatively close to the shape of the object. The reason is
that, in the absence of mapping or correspondence information, some other approxi-

Final Technical Report

Figure 2.1 The inflating balloon model as illustrated in a 2-D case: (a)
the initial state, (b) and (c) intermediate states, (d) the final state.

mations have to be used, such as the nearest data point to the model [13] in order for
the system to converge to the desired results under the attraction force between the
correspondence points in the model and the data. Such an approximation would have
problems in cases where there are data points that are not the closest to their true
corresponding points of the model, and thus inevitably lead the system towards a sub-
optimal situation (local minimum). This is why those approaches can only deal with
star-shaped objects.

In this paper we present a new approach for surface description using a dynamic
balloon model represented by a triangular mesh. We start with a small triangulated
shell placed inside the object and apply a uniform inflation force on all vertices in the
direction normal to the shell's surface. The vertices are also linked to their neighbor-
ing vertices through springs to simulate the surface tension and to keep the shell
smooth. The applied inflation force moves the vertices towards the object surface until
they "land" on it. This process is similar to that of blowing up a balloon placed inside
the hollow object until it fits the shell of the object. Thus the goal of mapping the mod-
el to the object surface is achieved through the physics of a growing balloon in a very
natural way (see Figure 2.1). Of course, we also need to handle noisy data, and holes
(lack of data), as described later.

Our system is not based on global minimization methods, and it can make deci-
sions based on local information about the shape of the object surface. During the pro-
cess of the growth of the triangular mesh, the triangles will be subdivided
dynamically to reduce spring tension and to allow the mesh surface area to increase
in order to cover the larger object surface. As the mesh expands and the vertices start
to reach the object surface, the entire mesh surface is gradually subdivided into pieces

Final Technical Report

of connected triangular regions, which allows us to treat the surfaces in a local context
by tailoring the parameters, and possibly strategy, of the system in dealing with each
region separately based on local information.

Another aspect of our approach is its role in data integration. Most of the previ-
ous research make use of scattered 3-D points or a single range image as input. Very
few researchers (e.g. [10]) try to use multiple densely sampled range images. There
are two difficulties in using these range images. First the images must be precisely
registered. We have previously presented a method [1] to register multiple range im-
ages, which is used to register the range images used in this paper. The second is the
issue of integration. Integration can not be performed without an appropriate repre-
sentation for the integrated data. While star-shaped objects can be simply mapped
onto a unit sphere, and the integration can then be performed easily [1]. This is not
true for complex objects, since it is difficult to find an integrated representation. Thus
finding a suitable representation is very important. While it is not the main theme of
this paper, we believe that our approach leads to a good solution to combine and take
advantage of multiple range images in surface description for complex objects in
terms of integration.

In the following sections, we first review some of the related previous work and
then present our balloon model in detail. Section [2.3] describes our surface model and
how it works, Sections [2.4] and [2.5] define the dynamics of the system. Section [2.6]
explains the adaptive mesh subdivision scheme. In Sections [2.7] and 8, we give an
algorithmic description of our system and describe how to set system parameters. Sec-
tion Chapter 2 discusses issues on how to adapt the parameters locally and dealing
with noise. Several test results from real range images, from both simple and complex
objects, are presented in Section [2.10]. The conclusion follows in Section [2.11].

2.2 Related Work
Dynamic mesh models have been proposed by previous researchers for shape de-

scription. [12] introduced a shape reconstruction algorithm using a dynamic mesh
that can dynamically adjust its parameters to adapt to the input data. [13] then ex-
tended this approach by introducing an attraction force from the 3-D input for shape
description. [6] also proposed a similar system with dynamic nodal addition/deletion
for shape description and nonrigid object tracking. [4] proposed a deformable model
with both internal smoothness energy and external forces from both the input data
and features. There exist other deformable model approaches that differ in the repre-
sentation schemes of the model and in the approaches to solving the system [5][11].

The main difference between our method and those used by previous research-
ers is that we do not explicitly introduce a data force into our model, as discussed in
details in the following sections. Our model is driven by an inflation force introduced
inside the balloon. Balloon models have been used by [3] and [7], but in these ap-

Final Technical Report

proaches, the introduced balloon force is used mostly to overcome noise in the data so
that the system can converge to the desired results more easily.

2.3 The Inflating Balloon Model

Our balloon model is represented by a shell of triangulated patches. The initial
triangulated shell is an icosahedron. A triangulated shell can be either considered as
a mesh consisting of triangular patches or a mesh consisting of vertices (or nodes) con-
nected to their neighbors. In the following discussion, a mesh element may refer to
either a vertex or a triangle patch. But in this paper, we mainly explore the properties
of the vertices.

When placed inside the object, and under the influence of the inflation force, the
shell grows in size as the vertices move along the mesh surface normal in the radial
direction, maintaining an isotropic shape, until one or more vertices reaches the ob-
ject surface. During the process of inflation, the triangles may be subdivided adapti ve-
ry, which also creates new vertices. Once it reaches the surface, a vertex is considered
anchored to the surface and thus can no longer move freely. The remaining vertices,
under the influence of the anchored vertices, will gradually change their course of
movement, until finally reaching their corresponding surface point. As can be seen
from this process, the movement of the vertices is not influenced directly by any force
from the surface of the object. This seems to be bad from the viewpoint of a fitting pro-
cess, which tries to minimize some distance measure between the object surface and
the model. But this is important to us because our main concern is to find the mapping
between the mesh elements and the object surface. Not using any attraction force
from the surface data allows us to avoid incorrect mappings, which is a similar situ-
ation to the local minimum problem in energy minimization approaches. An example
of the growing balloon is shown in Figure 2.2 .

2.3.1 The Correspondence Problem

So far, we have not discussed how to test whether the mesh has reached the sur-
face of the object. This is the key difference between our approach and other dynamic
model systems or energy minimization systems. In order to test whether a vertex has
reached the object surface, one must measure the distance between the mesh surface
and some point on the object surface. Ideally this point on the object surface should
be the corresponding point of the vertex, which is not possible before the vertex reach-
es the surface. Previous researchers have used the closest point on the object surface
to an mesh element as an alternative, but it may provide incorrect information. In [7]
the distance from the data points on the surface to the nearest model point is used
instead, which is an improvement over the above approach. This approach, however,
is not practical when there is a large number of surface sample points from the object,
as in our case.

In our approach, we look for potential corresponding points only in the direction
normal to the mesh surface. This is the best knowledge locally available to the points

Final Technical Report

' ? i' :■ 1'1 * * i * - • ■•

(a) (b)

•':-'-:-''-f^-<v^v:

fe;
(/)

Figure 2.2 Stages of an inflating balloon inside the Phone, showing the
movement of the right front only (see Section Chapter 2). The wireframes are
superimposed with sample points from the used range images.

on the mesh surface at any time during the mesh's growing process, because the
equivalent mesh surface movement in the neighborhood of a mesh element is only in
the direction normal to the mesh surface. So it is only natural to look for correspond-
ing point from the object surface in the direction of the normal, which also changes in
the process of inflation. In our implementation, this is done by computing the prospec-
tive correspondence point P (Figure 2.3), the closest intersection of a line in the nor-
mal direction and the object surface represented in range images (see Appendix for
details). Once the intersection is found, the distance from the mesh surface to the in-
tersection can be used as a measure of whether the mesh has reached the object sur-
face.

When there are holes in the input data (parts of the object surface not covered
by the input data), we will not be able to find the intersections described above. In
such cases, there are no prospective correspondence points for the affected vertices
and thus there is no reason to continue applying inflation force. This kind of decision,

Final Technical Report

Anchored Vertices

Balloon fronts

Figure 2.3 Line-Surface intersection: searching
for a correspondence point in the normal direction.

however, should not be made locally for each vertex point. We will discuss the han-
dling of holes when we discuss our algorithm in details later, in Section [2.8].

2.4 A Simplified Dynamic Model

The motion of any element i on the model surface can be described by the follow-
ing motion equation [12]:

mJii + rje+g. = fv i = 1...JV (2.1)

where xi is the location of the element, ai^and x. are the first and second deriva-
tives with respect to time, mi represents the mass, r; is the damping coefficient, g; is
the sum of internal forces from neighboring elements due to, e.g., spring attachments
and/j is the external force exerted on the element. Because of the nonlinear nature of
the forces gj and/j involved, the systems of ordinary differential equations in Equa-
tion (2.1) can be solved using explicit numerical integration [12].

The dynamic system will reach the equilibrium state when both xt and x\ be-
come 0, which can take a very long time since it is usually an exponential process. A
simplified system can be obtained if we make mj = 0, and rt - 1 for all i, in which case
Equation (2.1) reduces to

x = ft-gi, i=l...N (2.2)

There are several reasons for this simplification. First, a zero-inertia system is
simpler and easier to control. Second, since there is no inertia, the system will evolve
faster in general. Although we are not seeking an equilibrium state for the entire sys-

10 Final Technical Report

tern, a simplified system will help speed up reaching local equilibrium states and
therefore accelerate the overall dynamic process. Third, a simplified system involves
less computation. Also, since we do not intend to have a special treatment for any par-
ticular elements in the mesh at this time, all rt should be equal, in which case we can
normalize the parameters so that rt = 1. The set of first-order differential equations
in Equation (2.2) has a very simple explicit integration form as follows:

x+At = (/{-*lU+*' (2.3)

2.5 Spring Force and Inflation Force
The spring force exerted on vertex i by the spring linking vertex i and./' can be

expressed as [12]:

lJ INI J

where ctj is the stiffness of the spring, etj = ||rJ| - ltj is the spring deformation,
rr = x.-xt, || || is the vector length operator and Z-. is the natural length of the
spring. The total spring force gi a vertex receives is the vector sum of spring forces
from all springs attached to it.

The inflation force a vertex receives takes the form of:

Ä- = knt (2.5)

where k is the amplitude of the force and ht is the direction normal to the local
model surface. In our implementation, the normal at a mesh vertex is estimated from
the vector sum of the normal vectors of the surrounding triangles:

Ai = ^ n^vfv + %. (2-6)
ill IIv y y

where ntj is the direction normal to thej'th triangle Tj € {Tß surrounding the
vertex, and ri.. is the direction normal to triangle T". that is the neighbor of 2\ but
T-t { T} . This estimation is more stable than the one we get when only the trian-
gles in {Tt} are used.

2.6 Subdivision and Adaptation of the Triangular Mesh
In a simulated physical system, during the process of the growth of the mesh

model, the mesh triangles increase in size, and tensions due to the spring force also
build up, which eventually stops the movement of the mesh, as the inflation force and
the spring tension equalize. This is not desirable in our system since we do not con-
sider force from the input data, so that an equilibrium state does not mean a good fit.
In order to keep the balloon growing, we can keep the inflation force unchanged

Final Technical Report 11

(which actually means to keep on inflating) and at the same time reduce the spring
tension by subdividing the triangles in the mesh into smaller triangles. Alternatively,
we can increase the inflation force and allow the spring tension to increase. But in-
creasing the inflation force also has the side effect of increasing the maximum dis-
placement. As can be seen from Equation (2.3), the spring force gt usually acts as a
balance force to the inflation force/j = ht (assuming a convex local structure), thus the
maximum displacement is directly related to the inflation force once a time step is
chosen. So we choose not to increase the inflation force in our system, but to subdivide
the mesh instead.

The purpose of subdividing triangles is twofold. Once a triangle is subdivided,
the sides of the triangles becomes shorter and if we keep the natural length and stiff-
ness of the springs constant, the spring tension is reduced. Also, subdividing the tri-
angles helps maintain an evenly distributed mesh. Subdividing triangles in a certain
region, as will be discussed later, also allows the mesh surface to adapt to the local
object surface geometry without affecting other parts of the mesh surface.

Before introducing the details of the triangle subdivision process, we first define
some terms.

A vertex is said to be anchored if it has reached the object surface and has been
marked as such. A triangle is said to be anchored if all of its vertices are anchored. At
any time in the mesh growing process, the triangles in the mesh can be classified into
anchored triangle regions, consisting of anchored triangles, and unanchored triangle
regions, consisting of movable triangles, called front. Each front is a connected com-
ponent of triangles, in which two triangles are said to be connected iff they share an
edge.

2.6.1 Adaptive Triangle Mesh Subdivision

Triangle subdivision is carried out only on the front, since anchored triangles are
not allowed to move. This allows the triangular mesh to adapt to the object surface
better without globally adjusting the position of all vertices. A good subdivision
scheme is one that yields an evenly distributed mesh and produces few degenerate
(i.e. long and thin) triangles. The algorithm that we use in this paper first selects a
set of triangles that needs to be subdivided through bisection. Then, after these trian-
gles are bisected on their longest edges, adjacent triangles are also bisected or trisect-
ed to make the triangles conforming, the state in which a pair of neighboring triangles
either meet at the a vertex or share an entire edge. In our implementation, only those
triangles that exceed certain size limit are subdivided first. The algorithm presented
below is adapted from Algorithm 2 (local) in [8], which is developed for refining trian-
gular mesh for finite element analysis.

12 Final Technical Report

2.6.2 Algorithm 1

Let T- be the set of the triangles from a given front, and TQ C T^ is the selected set of
triangles to be subdivided.

1) Bisect T by its longest edge, for each T £ xQ.

2) Find i?j c xQ the set of non-conforming triangles generated in step 1. Set k <- 1.

3) For each Te Rk with non-conforming point PeT (mid-point on the non-con-
forming edge): (a) bisect Thy the longest edge; (b) if P is not on the longest edge
of the T, then join P with the midpoint of the longest edge.

4) Let TQ be the triangulation generated in step 3. Find Rk + { c T* the set of non-
conforming triangles generated in step 3.

5) If Rk +1 = {0}, stop, the subdivision is done. Else, set k <- k + 1 and go to step
3.

This subdivision algorithm has the feature that the subdivision is only propagat-
ed towards large triangles from the longest edge of a subdivided triangle. It is also
proven that the resulting triangles' smallest inner angle is lower-bounded by half of
the smallest inner angle of the original triangles [8].

This algorithm, however, does not guarantee that the triangles on the boundary
areas of a front conform with the rest of the triangles in the triangulation. Hence, af-
ter the algorithm terminates, we must bisect the affected non-conforming triangles
accordingly. Thus we have:

2.6.3 Algorithm 2

1) Carry out Algorithm 1 on the set of triangles T0C^.

2) For each non-conforming triangle TC^ but connected to T^, bisect Tby its
non-conforming edge.

An example of the result from this algorithm is shown in Figure 2.4 , where tri-
angle A is to be subdivided and C does not belong to the region (front). As can be seen
from the figure, the subdivision is propagated to B, and finally C is bisected to make
the triangles at the region boundary conforming (step [2] above).

2.6.4 Local Mesh Adjustment

The above algorithm works very well under most circumstances, but degenerate tri-
angles that are long and thin may still occur. These triangles are undesirable since
they do not represent local surface shape well and are often the cause of self-intersec-
tion of the mesh surface. Currently, we use a simple algorithm that checks for pairs
of such triangles and rearrange the triangle configuration locally. After each subdivi-
sion, we check for triangles that are thin and long, and if two such triangles share an

Final Technical Report 13

(a) (b)

Figure 2.4 Subdivision of triangle mesh, (a) before A is
subdivided, (b) after A is subdivided and the subdivision is
propagated to both B and C.

Figure 2.5 Rearranging the local
configuration to eliminate long and thin
triangles

edge that is the longest for both triangles, then we simply switch the cross edge as
shown in Figure 2.5 .

2.7 Description of the Algorithm

In this section we give a brief description of the entire algorithm of our approach.
A discussion on how to set the system parameters will follow. We assume that regis-
tered range image views of the object to be modeled are available, although we believe
the algorithm can be adapted to other types of 3-D input.

We start with selecting an initial point inside the object and constructing an
icosahedron shell [13] at this location. The selection process is currently done by hand
and the size of the shell should be small enough so that it is completely inside the ob-
ject. Since the algorithm does not depend on the actual location of the initial shell, as

14 Final Technical Report

long as it is inside the object, an alternative to manually selecting the initial position
is to choose a smooth patch in any range image and place the shell under the patch.
The system algorithm can be described as follows.

2.7.1 Algorithm 3

Let all the triangles on the initial mesh be front F0 and push it into the front
queue Q, then until queue is empty, do the followings repeatedly:

1) F <= top of the queue Q, pop the queue.

2) Subdivide the triangles in F if appropriate (see next section).

3) For each vertex Vt £ F, whose 3-D coordinates at time t is v/, do

a) compute the internal force gt and external force ft = Ä, based on Equations (2.4) and
(2.5).

b) compute the new vertex location v/+A/ for the current iteration according to Equation
(2.3).

c) compute prospective correspondence point of v{-, which is the intersection wt of the sur-
face and the line through v,- and in the direction of the mesh normal at v,- (see below).

d) if v•+ At - v- > w■ - v- , then v/+At t= wt and mark vertex Vt anchored.

4) For each Vt £ F, update its position with the corresponding new positions v/+ .

5) Discard triangles from F that have thus become anchored (section [2.6]).

6) ifF = {0} then go to 1.

7) recompute connected triangle regions in F and push them into Q. Go to 1.

In step (3)(c) above, an algorithm that computes the intersection between a 3-D
line and the object surface in range image form is called for. This algorithm gives the
closest intersection of a line, which passes through a given vertex point and is in the
direction of the estimated local mesh surface normal at the vertex, and the object sur-
face (point P in Figure [2.3]). This is for the purpose of estimating the distance of the
vertex to the prospective corresponding points on the surface of the object (Section
[2.3.1]). Details of the algorithm can be found in the appendix.

2.8 Setting up the Parameters
In our current implementation, triangles that have areas larger than a thresh-

old St are subdivided at each iteration. St is directly related to the precision of the fit
of the final mesh to the input surface data. Assuming that our goal is to approximate
the object surface to have a triangle fitting error 5 for surfaces with maximum curva-
ture of 1/Rt, St can be easily computed by tessellating a unit sphere of radius Rt

with equilateral (or near equilateral) triangles of sizes smaller or equal to St. This
also gives us a sample configuration of an ideal front structure when the maximum

Final Technical Report 15

mesh tension is achieved. Let /,„„.,, „„„ be the maximum spring force exerted onto
OP i i flrQ fib Or PC ^"^

a vertex under such conditions. The inflation force needed to overcome the spring
force (in order for the vertices to move) is therefore

'inflate 'spring-max *"')

The inflation force is also constrained by Equation (2.3), since once a time step and a
maximum displacement per iteration are set, the allowed inflation force should then
be (considering 0 spring force):

dmax
finflate ~ ~£f (2-8)

where dmax = max(||x -x |) is the maximum displacement. Since a large infla-
tion force tends to dominate the mesh's evolution, which is undesirable, we prefer a
smaller one. We choose to use the minimal inflation force as shown in Equation (2.7).
We can then compute the needed inflation force amplitude k according to Equation
(2.5).

Now the whole issue comes down to determining/" . „„„, dm„„ and the time
step At. The maximum spring force is determined by the spring natural length li. and
the spring stiffness which are related (Equation (2.4)). In our experiments, we have
used I.. = 0 and c-- = 4.0. dmny. and At are selected to allow the mesh to evolve
smoothly and quickly relative to the object size and complexity. For all the tests in this
paper, we have used 2mm and 0.05 respectively.

Finally, the user needs to select 5 and Rt. For the purpose of simplicity, in our
experiments, however, we manually set Rt and allow a fixed number of Ntriangles to
fit the sphere with a radius Rt, which gives a nominal approximation error of about
0.6mm with N = 80 and Rt = 10mm.

2.9 Adaptive Local Fitting, Holes and Noise

It is also worth mentioning that our algorithm is parallelizable since the compu-
tations on each front in the queue Q are independent of each other. Furthermore, the
computation for each vertex within each front is also independent during each itera-
tion.

Another advantage that this computation structure brings us is that we can
adaptively adjust system parameters independently for each front based on the infor-
mation that we gather from the prospective correspondence points of the vertices in
the front. For example, if we have detected that the movement of the front is virtually
stopped and yet the prospective correspondence points are still certain distance away,
this tells us that the preset parameter Rt in previous section is too large and we should
adjust it accordingly.

Another example of such adaptation is in handling holes in data. In this case,
there exist areas of the object surface that are not covered by any of the input range

16 Final Technical Report

images, we will not be able to find prospective correspondence points for some of the
vertices in the related front. Eventually, when the rest of the vertices in the front have
settled down to their correspondence points, we are left with a front for which none of
the vertices have a prospective correspondence point. In such situations, the system
automatically sets the inflation force to zero (k = 0 in Equation [2.5]), which makes
the mesh reach an equilibrium state that interpolates the surface over the hole.

Another important issue is the issue of noise. There are two type of noises that
may affect out results. One is the noise introduced by the small misalignment among
the range images. The other is the spontaneous outliers from each range image. Our
system is very stable with respect to both types of noise. The first one is effectively
solved by the weighted sum line-surface intersection algorithm (see Appendix) since
the misalignment causes the actual intersections to form a cluster. The second type of
noise usually cause the intersection algorithm on the related range image to fail to
converge, in which case it does not contribute to the result of the intersection. Even if
the noise does produce a wrong intersection, it can easily be filtered out as an outlier
that does not belong to the correct cluster.

2.10 Test Results
We now present examples of our system in modeling a telephone handset

(Phone) and an automobile part (Renault) using 20 and 24 range image views respec-
tively, along with two examples for simpler objects. The range images are acquired us-
ing a Liquid Crystal Range Finder (LCRF) [9], and then registered using the range
image registration algorithm described in [1]. Some sample range images used in the
experiments are shown in Figure 2.6 . Figure [2.7] shows two examples of the balloon
model in fitting two simple objects: the Wood Blob and the Tooth. In Figure 2.8 , the
final rendered views of the constructed model of the Phone are shown below the wire-
frame drawing. Figure 2.9 shows a wireframe and the rendered image of the Renault
part. The final model for the Phone has 1694 vertices and 3384 triangles, the Renault
part has 2850 vertices and 5696 triangles. The total run time excluding registration
on a Sun Sparc-10 running Lucid Common Lisp version 4.0 is 1617" for the Phone and
32'26" for the Renault. Both the Phone and the Renault part measure about 200mm
across their longer sides. Note that the wireframe drawings in the presented results
are not produced using a hidden-line elimination algorithm, which is the cause of
most of the spurious triangles seen in the wireframe drawings, including the "defects"
in the middle which actually corresponds to a step at the back of the object.

As can be seen from the results presented above, our algorithm works very well
for both simple, compact objects, as well as non-star shaped objects with complex
structures. The resulting triangulated model surfaces preserve most of the important
geometry feature of the objects with evenly distributed meshes. Our initial guess are
all set in the neighborhood of the center of the objects and yet our balloon can success-
fully grow to cover all parts of the object with complex geometric structures such as
the Renault part. Also, it is hard to visualize this, but the data that we use for the

Final Technical Report 17

pH»

$m *- i^^^S*?.^

\&
\$r

Figure 2.6 Sample range images used in constructing the Phone
model and Renault model in Figures [2.8] and [2.9], shown here
as shaded intensity images.

Renault part contain holes on top of both of the arms, and the resulting mesh was able
to interpolate them very well. There is, however, a defect under the right arm of the
Renault part, as can be seen in the wireframe drawing. It is a small opening in the
mesh that tends to self-intersect which is caused by a small narrow ridge section
(about 8mm thick, much smaller than 2 times Rt, where Rt = 10mm). We believe that
this can be solved by examing and identifying local surface changes more closely and
adjusting system parameters accordingly in that area.

2.11 Conclusions and Future Research

We have presented a surface description method based on a dynamic balloon
model using a triangular mesh with springs attached to the vertices. The balloon

18 Final Technical Report

Figure 2.7 Examples of the balloon model for fitting simple objects: (a)
the original intensity images of the objects, (b) the wireframes of the
obtained balloon models and (c) the rendered shaded images of the
models,

model is driven by an applied inflation force towards the object surface from inside of
the object, until all the triangles are anchored onto the surface. The model is a phys-
ically based dynamic model and the implementation of the algorithm is highly paral-

Final Technical Report 19

(a)

(b)

(c)

Figure 2.8 The final balloon model for the Phone: (a)
wireframe (b), (c) smoothly shaded.

lelizable. Furthermore, our system is not a global minimization based approach and

20 Final Technical Report

Figure 2.9 The wireframe and the rendered image of the
reconstructed model for the Renault automobile part. The
inserted picture is the intensity image of the actual object.
Note that the wireframe is not produced by a hidden-line
removal algorithm (see Section Chapter 2 on page 17).

can allow the model to adapt to local surface shapes based on local measurements.
Tests showed very good results on complex, non-star-shaped objects.

Final Technical Report 21

As stated earlier, our goal is to achieve a correct mapping of a triangulated mesh
to the surface of an object, hence there are still many ways to improve the resulting
model we have achieved, including using the algorithms presented in [2] to improve
triangle fitting errors, or the method in [10] to merge small triangles into larger ones
without affecting the fitting error for constructing a hierarchical representation. Lo-
cal smooth patches can also be constructed for high level surface property analysis.
Alternative surface models, such as a smooth finite element surface model ([7]), can
also be used so that the implementation of the system elements can be made more
precisely. In addition, our future research consists of detecting and avoiding possible
self-intersections of the mesh surface.

2.12 References

[1] Y. Chen and G. Medioni, "Object Modelling by Registration of Multiple Range
Images," International Journal of Image and Vision Computing, 10(3):145—155,
April 1992.

[2] Y. Chen and G. Medioni, "Surface Level Integration of Multiple Range Images",
in Proceedings of the Workshop on Computer Vision for Space Applications, An-
tibes, France, September 1993.

[3] L. D. Cohen and I. Cohen. Finite-element Methods for Active Contour Models
and balloons for 2-D and 3-D Images. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 15:1131-1147,1993.

[4] H. Delingette, M. Hebert, K. Ikeuchi, "Shape Representation and Image Seg-
mentation Using Deformable Surfaces," CVPR 1991 pp.467-472.

[5] Andre Gueziec, "Large Deformable Splines, Crest Lines and Matchings", Pro-
ceedings of the International Conference on Computer Vision, pp. 650-657, Ber-
lin, Germany, May 1993.

[6] W.-C. Huang and D. B. Goldgof. Adaptive-Size Meshes for Rigid and Nonrigid
Shape Analysis and Synthesis. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 15(6):611-616, June 1993.

[7] T. Mclnerney and D. Terzopoulos, "A Finite Element Model for 3D Shape Recon-
struction and Nonrigid Motion Tracking", Proceedings of the International Con-
ference on Computer Vision, pp. 518-523, Berlin, Germany, May 1993.

[8] M. Cecilia Rivara, "Algorithms for Refining Triangular Grids Suitable for Adap-
tive and Multigrid Techniques", International Journal for Numerical Methods in
Engineering, Vol. 20, pp. 745-756,1984.

[9] K. Sato and S. Inokuchi, "Range-Imaging System Utilizing Nematic Liquid
Crystal Mask," In Proceedings of the IEEE International Conference on Comput-
er Vision, pages 657-661, London, England, June 1987.

22 Final Technical Report

[10] M. Soucy and D. Laurendeau, "Multi-resolution surface modeling from range
views," In Proceedings of the Conference on Computer Vision and Pattern Recog-
nition, pages 348-353, Urbana-Champaign, IL, June 1992.

[11] D. Terzopoulos and D. Metaxas. Dynamic 3D Models with Local and Global De-
formations: Deformable Superquadrics. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 13(7):703-714, July 1991.

[12] D. Terzopoulos and M. Vasilescu, "Sampling and Reconstruction with Adaptive
Meshes" Proceedings of the Conference on Computer Vision and Pattern Recogni-
tion, pp.70-75, Maui, HI, June 1991.

[13] M. Vasilescu and D. Terzopoulos, "Adaptive Meshes and Shells: Irregular Trian-
gulation, Discontinuities, and Hierachical Subdivision," Proceedings of the Con-
ference on Computer Vision and Pattern Recognition, pp. 829-832. Urbana-
Champaign, IL, June 1992

2.13 AppendixThe Line-Surface Intersection Algorithm
We describe an algorithm for computing the intersection of a directed line (a ray)

and the object surface represented by a set of registered range images. This algorithm
is based on the line-surface intersection algorithm in [1], which computes the inter-
section between a line and a digital surface represented by a single range image.

We begin with a brief description of the original algorithm. As shown in
Figure 2.10 , we are given a directed line / that passes through a certain point/?, the
intersection, q, of / and the surface Q can be computed as follows. We first project p
onto Q in its image space and find the tangent plane of Q at the projection. Then we
compute the intersection q° of the plane and I, which becomes the first approximation
of the intersect we are looking for. We repeat the process by projecting the intersection
approximation q1* onto Q at each iteration. When this process converges, the resulting
intersection is taken as q. Note that in this approach, we also have a directional con-
straint for the found intersection, which states that the local surface normal at the
computed intersection point must be within 90° of the direction of the ray, which is
the direction of the mesh surface normal in this paper.

When we have more than one range images, the intersection of the line with all
the range images are computed. Let {Q •}, i = 1... m, be the set of range images and
/ be the line in consideration. The intersection of I and the surface { Qt} can be de-
fined as the weighted sum of all the intersections:

m

£ aiwi<*i
q = ±1 , «,. = (nqt ■»,) (2.9)

Final Technical Report 23

Directed Line I

Approximate Intersection
Tangents

Projections

True intersection

Start point

ö *

Figure 2.10 Intersecting a line with a digital surface
illustrated in a 2-D case.

where qt is the intersection of / and Qi} n is a unit vector normal to Qt at qt, ng is the
vector pointing towards the sensor and a/is a binary number depending on the inter-
section of / and Qi, and

a. = 1, if the intersection exists
0, if there is no intersection

The reason behind taking a weighted sum of the intersection points is that the
sensor measurement of the position of a surface point is less reliable if the local sur-
face is facing away from the sensor. The weight wi is a reflection of this heuristic. In
general, the sensor direction information ng is available from the range image sensor
setup and calibration. For a Cartesian range image (depth map) without sensor infor-
mation, we can simply take n3 = (0, 0,1)T.

If there are more than one intersections between / and the object surface, we can
perform a clustering to separate the intersections into groups corresponding to each
real intersection, and choose the closest cluster to compute the above weighted sum.
In practice, we have not had to use such a clustering algorithm. This is because the
result of the intersection algorithm depends on an initial point p (which is the vertex
point in this paper). When the vertices are far from the object surface, qt can be from
any clusters. But we are less concerned with the actual location of the intersection at
the time. As the mesh grows and the vertex get closer to the surface, almost all the
intersections computed are from the closest cluster, since it is the closest local mini-
mum when considering the intersection process as a minimization. For robustness
purpose, we have implemented a simple filtering scheme to eliminate gross outliers
in the intersections based on the distribution of the intersections found.

24 Final Technical Report

3 Surface Approximation of
Complex 3-D Objects

Chia-Wei Liao and G6rard Medioni
Our goal is to generate a surface description of complex objects with parts and

holes. We start by fitting a surface, assuming the object is of Genus 0, then analyze
the result to further segment the description.

In the first part of our algorithm, the system provides an initial estimated sur-
face which is subject to internal forces (describing implicit continuity properties such
as smoothness) and external forces which attract it toward the data points. The prob-
lem is cast in terms of energy minimization. We solve this non-convex optimization
problem by using the well known Powell algorithm which guarantees convergence
and does not require gradient information. The variables are the positions of the con-
trol points. The number of control points processed by Powell at one time is controlled.
The process is controlled by two parameters only, which are constant for all our ex-
periments.

The above approach is not sufficient for complex objects with cavities, or for more
than one object. We therefore propose an approach that can apply simultaneously
more than one curve or surface to approximate multiple objects. Using (1) the residual
data points, (2) the bad parts of the fitting surface, and (3) appropriate Boolean oper-
ations, our approach is able to handle objects more complicated than Genus 0 or with
deep cavities, and can perform segmentation if there is more than one underlying ob-
ject.

3.1 Introduction

Range sensing is a mature technology, and there are many methods, such as
time of flight and MRI, collect 3D data based on this technology. In addition to this,
3D data can also be obtained in passive ways like stereo and shape from X methods.
The data obtained from the above sources is in the form of points.

But, in computer vision, what we need are some properties such as the curva-
ture, normal, and principal directions. These quantities relate to the underlying sur-
face, which is not made explicit in the original data. Furthermore, it is even more
difficult if some ordering relation among the data points is not known. This happens
mainly when we gather data points from various sources. Analytical surface construc-
tion of a cloud of points (boundary points of the object) becomes important because it
is much easier to extract the features from an analytical surfaces. So, we need some
tools to construct an analytical description (for example, surface) for the collected 3D

Final Technical Report 25

data. A deformable model, which can give a analytical surface representation over a
cloud of 3D data points, is able to serve this purpose.

The idea of fitting data by a deformable model can be found in the work of Kass
et al. [14] in 2D. Such models are generalized in 3D by the same authors [15] for a
surface of revolution.

There have been many works [16]-[29] derived from this seminal idea. But most
of them either require many parameters, or cannot guarantee convergence (partially
due to the use of gradient descent to minimize the energy). Furthermore, they suffer
from the following problems:

First, there may be more than one underlying object, and these objects might be
close to one another. Most deformable model algorithms assume that there is only one
object, that is, the segmentation has been done beforehand. It takes sophisticated seg-
mentation to separate these mixed objects, and it is often the case that segmentation
is much more difficult than the fitting process.

Second, they cannot handle very well patterns with deep and narrow cavities. To
capture a cavity directly through energy minimization, we need to differentiate be-
tween the data points belonging to the cavities from the other points when defining
the external energy. But this might lead to a circular problem.

Third, without prior knowledge, most of them are insufficient for objects more
complicated than Genus 0.

Our proposed algorithm can deal with these problems appropriately. There are
mainly two parts in our algorithm. In the first part, we focus on the Genus 0 surface
fitting. We apply a tested numerical method which guarantees convergence. Through
an coarse-to-fine approach and a partitioning scheme, the computational time is kept
in check. By using the surface fitting algorithm in the first part and appropriate bool-
ean operations, we develop another method that can accomplish data segmentation
and handle objects with deep cavities or more complicated than Genus 0.

3.2 Part 1: Genus 0 surface fitting

3.2.1 Issues

Several problems come with the algorithms dealing with deformable models:

1. Huge computational time and space: Assuming MxN control points on the fit-
ting surface, there are 3MN variables for this surface. Theoretically, we can just inject
these 3MN variables into a minimization algorithm to minimize the energy of the fit-
ting surface. This approach turns out to be impractical due to the unbearable compu-
tational time when 3MN is large. Furthermore, most minimization algorithms need
a matrix of size (3MN)x(3MN), which also results in huge space complexity. An adap-
tive approach can just alleviate these problems, but cannot avoid these problems in
the worst case, especially when all control points or patches are bad.

26 Final Technical Report

2. Constructing a smooth closed surface from the B-spline control points: we ob-
tain a closed surface by closing the top and bottom parts of the rectangular mesh as
depicted in Figure 3.1 . The problem is that the poles are not smooth when we try to
construct a smooth surface directly from the control points. It is because these two
poles are shared by many degenerate patches (triangular patches) around them.

3. A good approximation of the data as the initial surface: the quality of the fit-
ting result depends on the initial surface, and we would like the result to be invariant
to the initial surface as long as the initial surface is not too bad.

4. The convergence of the surface to the data points: the convergence of the fit-
ting process should be guaranteed. By using the Powell [30] minimization routine, the
convergence is guaranteed.

All problems listed above are well handled by our algorithm for the surface fit-
ting.

3.2.2 Algorithm

Now, we define some terms for further use. We define a Cap to be the triangular
patches formed by a Pole and its adjacent control points. So, we always have two
Caps. A Meridian (a line of constant u in parameter space) is defined to be the line
connecting the two Poles, as depicted in Figure 3.1 .

jtpole

Before fitting C^>t<^>

meridian

After fitting ßspole

cap'
Figure 3.1 The initial closed surface and the definitions of
Pole, Meridian, and Cap

A flowchart of our algorithm is in Figure 3.2 .

In our algorithm, we consider a sphere as composed of three parts, which are two
caps and an open cylinder as shown in Figure 3.1 . These three parts are processed
separately in our algorithm.

Instead of injecting all MxN control points into the minimization procedure
(which is possible but extremely expensive), we decompose the problem into a curve
fitting problem followed by a (simpler) mesh fitting problem.

Given that the caps are already in place, we select every other meridian and
move their (M-4) control points, which are not shared with the two caps, to minimize
their energy. We then select the remaining meridians and move their (M-4) control

27 Final Technical Report

Start

I
Initialize the tittmg surface

Stage 1: Fit polar caps

I
Stage 2: Curve fitting (by adjusting every

odd(resp. even)-indexed meridisn)

Stage 3: Mesh fitting (by adjusting the rem-
aining even(resp. odd)-indexed meridians.

Refinement of "Fit Surface".

Figure 3.2 The flowchart of the Genus 0 algorithm

points, which are not shared with the two caps, to minimize the energy of the related
patches this time. It is important to note, however, that only the bad segments (patch-
es or curves) are injected into the minimization procedure (after the energy minimi-
zation, we can guarantee that the associated energy of the bad segments is reduced,
but some segments with higher external energy might still be bad). Then, we subdi-
vide all patches in four, and repeat the process until some terminating condition is
met.

Our algorithm is a 4-stage one, and during the first three stages, Powell is called
frequently for energy minimization.

28 Final Technical Report

First, we fit the caps to the data, and force the caps to be planar. This way, all
tangent vectors in all directions at the pole are coplanar. When fitting, the cap can
change its shape, subject to the planar constraint, in order to get the best fit. By du-
plicating the control points at the poles and this planar constraint, we can get a
smooth caps around the poles when we want to construct a smoother (e.g. C) surface.

Second, we perform the curve fitting to some meridians to locate the profile of
the target, and this is done by applying energy minimization to these meridians. We
select the odd(resp. even)-indexed meridians and fit them to the data by treating them
as approximating linear B-snake [16]. The only difference between a B-snake and a
selected meridian lies in the internal energy. When calculating the internal energy of
these meridians, we not only consider their own smoothness but also the smoothness
between them and their immediate neighboring even(resp. odd)-indexed meridians
(an example is depicted in Figure 3.8). Then we let them adapt to find the profiles of
the target. These selected meridians are not influenced much by the fitting surface (by
the internal energy) when moving, so they can detect the object more accurately.
Please notice that the external energy of these selected meridians is defined on the
curve without considering the surface nearby. The surface is separated by the selected
meridians into independent "strips" in a way, and each strip contains an even(resp.
odd)-indexed meridian. Each strip is bounded by two odd(resp. even)-indexed merid-
ians.

Next, we fit each strip to the target. We select meridians of the other polarity,
even(resp. odd)-indexed, to do the mesh fitting for each strip. We treat them as regu-
lar snakes, except that they are tuned to minimize the external energy (error) of the
strip. This means the external energy is not only from the curve but also from the area
it defines.

The fourth stage is subdivision (in Figure 3.3). If the fitting surface up to now is

!3 55 S5 8S
!5 ■■■■!!
2* ■■ ■■ •;
5S ■■■■!! j* ■■ ■■ ■»

Figure 3.3 Subdivision (except on the caps).

not satisfactory, we subdivide all rectangular patches into four and then go back to
stage 1, otherwise, we exit.

3.2.3 Initial guess

What we want to obtain is the outer contour of the target at each stage. The con-
cavities of the objects can be detected later by applying Boolean operations applied at
the next stage. We just need to have the initial surface (or curve) covering all data

Final Technical Report 29

points. So, the initial fitting surface would be slightly larger than the target, and it
shrinks when the energy is being minimized.

First, we compute the center of mass of the data points, and extract the farthest
data point in each sampled direction. The polygon formed by these extremal data
points is used as the initial guess. An illustrative example is in shown Figure 3.4 .

In the 3D case, we have two alternatives. The first one is to use a cylinder cov-
ering all data points as the initial surface. In the second approach, we first calculate
the center of mass C, too. In order to make the system invariant under translation and
scaling, we compute the three eigen vectors of the covariance matrix of the data
points, and then use these orthogonal vectors to define another coordinate system
with the origin at C. We define the sampled directions according to this coordinate
system, and find the farthest data point in each sampled direction. With these far-
thest points, we can obtain a fairly good initial estimate on the data points. In both
approaches, the caps of the initial surface must be initialized to be planar. Examples
for these two approaches are in Figure 3.5 and Figure 3.6 , respectively.

In both 2D and 3D cases, if there is no data point in the sampled direction, we
set the corresponding radius to a predefined constant for the initial estimate of the
curve and surface.

• • •

• • ' • . 0 . • .
• '. • • ,© \i ©x<3)

(a) Data points (b) Center of mass and the (c)Initial snake

sampled farthest data points (a Polygon)

Figure 3.4 Initial guess

3.2.4 Parameters

There are only two important parameters, ERRORthreshold and RATIOgxt.to.int,
set by the user in this algorithm.

ERRORtnreghoia is used to determine whether or not a patch of the surface or a
span of the snake is good. We only process the bad parts of the snakes and the bad
patches on the fitting surface during each iteration. At each iteration, a patch (or a
span) is good if its average external energy is smaller than ERROR^n-eg^y; other-
wise, it is bad.

RATIOext.to.int specifies the relative importance of the external energy with re-
spect to the internal energy. After setting RATIOext-t0-int' two internal parameters

30 Final Technical Report

Wext and Wint, concerning the weights of the external and internal energies, are set
by the system. Wext is always 1, and Wint is set as below:

TT, current - ext
W

int E , . .xRATIO . , . . current - mt ext-to-int
Where Ecurrent.ext is the current exter-

nal energy of the fitting surface or snake,
and Ecurrent.int is the current internal ener-
gy of the fitting surface or snake

Every time Powell is invoked, Wint is re-calculated based on RATIOext.to.jnt and
the current internal and external energies of the fitting surface. So every time, Powell
may be called with different W^t-

The reasons why we set RATIOext.to.int is that Wext and Wint are different mea-
sures and thus on different scales. RATIOext-t0-int serves to normalize two energies.
RATIOext.to-intis always greater than 1; otherwise, the fitting surface is unlikely to
conform to the data points, as we now explain.

As we subdivide the surface after each iteration, the fitting surface is approach-
ing the real object. We have more confidence in the fitting surface. So it is suggested
that the internal energy weight be reduced as the process goes on. One more advan-
tage of RATIOext-to-intis tnat the weight of the internal energy tends to decrease as
the process goes on, because Eext decreases faster than E^t does when RATIOext.tQ.int
is greater than 1. By setting RATIOext-to-intto be a constant greater than 1, we can
diminish the importance of the internal energy after each iteration implicitly, and
thus obtain a better fitting surface.

On the contrary, if we set Wint directly and keep it unchanged, then the internal
energy tends to dominate at the later iterations because the external energy decreas-
es faster than the internal energy does. This might not lead to a good fit.

These two parameters could be constants in most cases, which means we can use
the same values for most data regardless of the complexity of the underlying object
(because the weight of the internal energy decreases automatically as the fitting pro-
cess goes on). Thus, we can assume the underlying object is smooth, and assign a lib-
eral weight to the internal energy. We use the same parameter values in our
experiments.

3.2.5 Summary

In summary, in the first step, we fit the caps. Next, the odd(resp. even)-indexed
meridians are used to find the profile or frame of the target, and the surface is divided
into strips by these meridians. Then the even(resp. odd)-indexed meridians are ap-
plied to fit the strips to the data. Finally in stage four, we subdivide the surface, that
is, we divide each rectangular patch at its center into four (we can avoid degenerate
patches this way). We break the 3D surface problem into a set of 2D (linear) B-snake

Final Technical Report 31

problems in a way. Also notice that, at each step, although we have different ways of
calculating the internal energy E^nt, and the external energy E' t, the basic idea is
the same.

We can see that this is a typical coarse-to-fine approach. We start with few con-
trol points and large patches, then we increase the number of the patches and control
points at later iterations.

Our algorithm overcomes the time and space complexities, and closed surface
problems by (1) breaking the 3D surface problems into several 2D snake problems,
which is shown in stages 2 and 3, (2) coarse-to-fme approach, and (3) forcing the cap
to be planar. Due to the robustness of Powell, we do not need a good initial guess. Also,
the Powell method guarantees convergence.

Please notice that stages 2 and 3 can be performed very fast when there are few
control points. We can take advantage of this to get more reliable global information.
The computational time could also be largely reduced by parallel processing. It is ob-
vious that (1) the two caps are independent of each other, (2) all odd(resp. even)-in-
dexed meridians are independent of one another, and (3) all even(resp. odd)-indexed
meridians are independent of one another, so each stage can be performed in parallel.

3.2.6 Experiments

ERROR^gghoid and RATIOext_to_int are 1.0 and 10 in all of our experiments. The
first experiment on the head is performed on Sparc 10, and the second on IRIS Indigo.

Figure 3.5 shows the evolution of the fitting surface with the cylindrical initial
surface, and both the shaded and wire-frame results are shown. The average external
energy of the surface point is initially 20.15 voxels, 1.43 voxels after the first iteration,
1.21 voxels after the second iteration (one sub-division has been done), and 1.18 vox-
els after the third iteration (two sub-divisions have been done).

An experiment on the Renault part (see Figure 3.6). Around 3820 control points
are used. The maximum point error of the fitting surface is 2.0, and the average is
0.37 voxel. The running time here includes the time for constructing the energy field,
so it is longer than those for the other experiments. There are three iterations (two
subdivision). A 200x200x200 cube is used to store the external energy. The average
error is 10.54 voxels initially, 1.04 voxels after the first iteration, 0.41 voxel after the
second iteration, and 0.37 voxel finally. The distribution of the error is also shown, (a)
shows the original data, (b) is the shaded result, (c) is the initial surface, (d), (e), and
(f) are the results after each iterations, (g), (h), (i), and (j) show the patches with an
error above 0.3, 0.6, 0.9, and 1.2, respectively. There are only three patches with an
error over 1.2 (and less 2.0). The detailed information is on Tables 1 and 2.

32 Final Technical Report

r

(a) Initial surface. (b) Result 1 (c) Result 2 (d) Result 3

(e) Initial wire (f) Wireframe 1 (g) Wireframe 2 (h) Wireframe 3
Figure 3.5 The evolution of the experiment of head 1. (a) is the initial
surface (cylinder), (b), (c), and (d) are the deformed results for each
iteration. The surface has been sub-divided twice, (e), (f), (g), and (h) show
the wire frames of (a), (b), (c), and (d).

3.3 Part 2: Surface fitting for complex objects

3.3.1 Issues

Most deformable algorithms are deficient when (1) there are multiple underly-
ing objects, (2) there are deep cavities, or (3) the underlying objects are more compli-
cated than Genus 0. These are the problems we want to resolve here.

Table 1: Performance on the Renault part experiment

Initial
surface

first
iteration

second
iteration

third
iteration

Error 10.54 1.04 0.41 0.37

Control points 16x18 16x18 32x33 64x63

Computation time (min.) 0.1 21 19 3

Table 2: General information on the Renault part experiment

Number of data points Time for constructing energy field No of subdivisions

214100 2.16 minutes 2

Final Technical Report 33

(a) Original data (b) Shaded result

(c) Initial surface

(e) Second fit

(g) Patches with
an error > 0.3

a**

\B -V

(d) First fit

(f) Third fit

(h) Patches with
an error > 0.6

^j

(i) Patches with

an error > 0.9

(j) Patches with
an error > 1.2

Figure 3.6 Experiment on a Renault part.

34 Final Technical Report

3.3.2 Algorithm

Our proposed approach is to use a hierarchy. We would like to handle a compli-
cated object by representing it as a tree. The underlying object can be obtained by ap-
plying Boolean operations recursively to the tree. Every node in the tree, including
the root, is supposed to be a simple object without narrow cavities or inner tunnels,
that is, each node contains the outer contour of some object. We still use the energy
fields mentioned in the previous section to detect the outer contour.

Let B be the outer contour first found. Then, we isolate residual data points that
are not well fitted, and cluster these residual data points into groups. Next, we find
those bad parts of the fitting curve with high external energy. For each bad part, we
check if there is a group of residual data points connected with it. If so, we merge it
into this group, otherwise we consider this bad part good because no data points are
nearby. Now, we have groups of points. We treat each group of bad data points as an
object and find out its contour recursively. Let P be one of the contours.

If P is inside B, which means P is a negative part of 5, then B= B\P;

If P is outside B, which means P is a missing part of B, then B=BuP

How do we check if sub-part P is inside or outside body B? Because the boundary
of any object here is a closed continuous B-spline curve, we can separate the inside
from the outside by setting different gray levels inside these two regions. Through the
gray level values, we can tell whether a pixel is in B or not. Thus we can determine if
P is inside or outside B easily.

An illustrative 2D example is given in Figure 3.7 . (a) shows a complex object
Object

Pl Pi P, P4

¥ !

Pi P? ?3 P4

Lk A
(a) Original object (b) Result of (a) (c) Tree of(b)

P Object! Object2

(d) Original data composed (e) We can detect two objects after applying
of two objects. the difference Boolean operation.

Figure 3.7 Two illustrative examples of object
decomposition.

with deep cavities. In (b), by finding the outer profile only, and using the residual data

Final Technical Report 35

points and the bad curve segments, we get simple-shaped primitives B, Plf P2, P3, P4,
P5, and Pß. The original object can be restored by applying the appropriate union and
difference Boolean operations, (c) shows the tree associated with the result in (b). (d)
shows two objects close to each other. By applying the difference operation, we can
classify this set of data points into two different objects as shown in (e).

3.3.3 Experiments

In the first experiment (in Figure 3.8), we use hand-made data, which consists

(a) Original hand-made data

«P
(b) Fitting result after applying

a sequence of Boolean operations.

Fining results of these Bad fitting segments Data Points not

two clusters accounted for
(c) Two clusters of the bad segments and bad data

points are found after the first fit

Result=

(d) Order of the Boolean operations applied

Figure 3.8 Segmentation on two concave patterns.

of two simple objects with deep concavities. After applying a B-snake and appropriate
Boolean operations, these two objects are differentiated, (a) is the original data, and
(b) is the final result, (c) shows the initial guess, and how the residual data points and
the bad B-snake segments merge into two clusters (which form the negative parts of
the target), (d) shows the Boolean operations applied. At first, the outer contour is
found. We find two clusters of residual data points inside the outer contour, so the dif-

36 Final Technical Report

ference Boolean operations are applied. Finally, the original contour is separated into
two

In the second experiment (in Figure 3.9), the data points are the same as those

(a) Data corrupted by noise (b) Fitting result

Figure 3.9 Experiments on noisy data.

in Figure 3.8 except that (1) half of the data points are deleted randomly, and (2) the
data points are randomly shifted at most 3 pixels, (a) shows the data points, which
have broken boundaries, (b) is the result. The sequences of the Boolean operations ap-
plied are exactly the same as those in the previous experiments. The boundaries de-
tected here are more irregular, but they are still continuous B-spline curves. So the
objects and the hole can still be correctly segmented.

The third experiment, in Figure 4.10 , is on 3D data which is composed of two
separate genus 1 toruses. (a) shows the data points, (b) is the result (object A) after
the first fit, which results in a dumbbell-like shape, (c) is the residual of the data
points that are not accounted for by object A. They are from the inner parts of the two
toruses, and (d) shows the bad parts of object A without data points nearby. They are
from the two ends and middle of object A. (e) is the merger of points in (c) and (d). (f)
is the fitting result (object B) to points in (e). Because object B is inside object A, a dif-
ference operation A\B is applied, which leads to two separate entities, (g) shows the
shells of the two separate entities, which are toruses. In this experiment, objects (two
separate toruses) more complex than genus 0 are well handled, and the data segmen-
tation, which segments the data points into two parts, is automatically done after fit-
ting.

3.4 Discussion
There are several important aspects in this paper:

• Our new scheme is a coarse-to-fine approach. It divides all patches after each
iteration. It is efficient because if a patch is really good, then the only operation
applied to it in the future is just sub-division, which costs very little. This
scheme also preserve the rectangular structure of the surface after each sub-di-
vision, which makes generating smooth surface easier and cheaper. This ap-
proach is free from the degenerate patch problem because a rectangular patch is
always divided into 4 rectangular ones. We prefer the rectangular mesh to the
triangular mesh because it is much easier to construct a smoother surface from

Final Technical Report 37

...I-UMM',,

p 'S
Jl-y.":"'.]^

fc-:::::.:--3

at ■]„.,,-\£

*<. •r v,.:,y.

(a) 3D Data points.

2 -¥

(fc) Object A after the first fit

<
„->

fcj Residual of data points.

f^j Bad parts of the fitting surface.

yu
\

fej Merger of data points in (c) and (d).

if) Object B after fitting points in (e).

(g) Result of the boolean operation A\B.

Figure 4.10 Experiment on two tori

38 Final Technical Report

the rectangular mesh, and the properties, such as derivatives, are much easier
to obtain.

• There is always a large matrix associated with the minimization algorithm,
and the size of the matrix is proportional to the square of the number of the vari-
ables. This might result in the memory explosion if there are many control
points to handle at a time. Also, the numerical method goes extremely slow un-
der this situation. With the partitioning scheme, we break a 3 dimensional prob-
lem down into several 2 dimensional problems, and then the space and time
complexities can be reduced significantly. We separate the surface into several
strips, so Powell is always called with a limited number of variables. For exam-
ple, if the fitting surface has MxN control points, the maximum number of vari-
ables sent to Powell is around 3*(N-4). Only the bad parts of the strips and the
meridians are tuned by Powell. So, in practice, the number of variables is far be-
low 3*(N-4). The caps only have (N+5) variables, which is also low.

• We reduce the weight of the internal energy implicitly as the iteration goes on,
because we have more confidence in the fitting surface after each iteration. This
way, the discontinuities of the data can be well preserved.

• We use the Powell minimization routine which is more stable, robust, and ac-
curate than the gradient descent approach.

• Due to the independency among the caps and meridians, our algorithm could
run in parallel.

• This system is easy to control because there are only two global parameters to
adjust.

• The assumptions of (1) one underlying object only, (2) the availability of good
initial guess, and (3) geometrically simple objects without deep cavities have
been the weakness points of the deformable model algorithms. By applying mul-
tiple snakes simultaneously and Boolean operations, objects can be segmented
into independent ones, and cavities can also be well handled. Our algorithm
makes the deformable model much more versatile.

3.5 Future work
We would like to upgrade all algorithms in this paper completely to 3D ones, and

build a working system for both 2D and 3D. In addition, we would like to work out a
better 3D surface representation which can handle multiple objects and objects more
complicated than Genus 0.

References

[14] M. Kass, A. Witkin, and D. Terzopoulos, "Snakes: Active Contour Models", in In-
ternational Journal of Computer Vision, January 1988, pp.321-331.

Final Technical Report 39

[15] D. Terzopoulos, A. Witkin, and M. Kass, "Constraints on deformable models: Re-
covering 3D Shape and Nonrigid Motion", Artificial Intelligence, Vol. 36, 1988,
pp. 91-123.

[16] Sylvie Menet, Philippe Saint-Marc, and Gerard Medioni, "B-snakes: implemen-
tation and application to stereo", in Proceedings of Image Understanding Work-
shop 1990, pp.720-726, Pittsburgh, September, 1990.

[17] Brent, Richard P. 1973, in Algorithms for Minimization Laurent D. Cohen, "On
Active Contour Models and Balloons", in Computer Vision, Graphics, and Image
Processing, Vol. 53, No. 2, March 1991, pp.211-218.

[18] H. Delingette, M. Hebert, K. Ikeuchi, "Shape Representation and Image Seg-
mentation Using Deformable Surfaces", in Computer Vision and Pattern Recog-
nition, 1991, pp467-472.

[19] Scott, G. L. (1987), "The alternative snake - and other animals", in Eklundh, J,-
O., editor, The 1987 Stockholm Workshop on Computational Vision, Stockholm.
Dept. of Numerical Analysis and Computing Science, Royal Institute of Technol-
ogy, TRITA-NA-P8714 CVAP 47.

[20] Staib, L.H. and Duncan, J.S. (1989). "Parametrically Deformable Contour Mod-
els" in Computer Vision and Pattern Recognition, 98-103, San Diego, CA. IEEE
Computer Society Press.

[21] Leitner, F., Marque, I., Lavallee, S., and Cinquin, O. (1990)., "Dynamic Segmen-
tation: Finding the Edge with Differential Equations and 'Spline Snakes'". Tech-
nique Report TIMBTIM 3-IMAG, Faculte De Medecine, La Tronche, France.

[22] Curwen, R. M., Blake, A., and Cipolla, R. (1991). "Parallel Implementation of
Lagrangian Dynamics for Real-Time Snakes", In Mowforth, P., editor, British
Machine Vision Conference, 29-35, Glasgow. Springer-Verlag, London.

[23] Cohen, L.D. and Cohen, I. (1990), "A Finite Element Method Applied to New Ac-
tive Contour Models and 3D Reconstruction from Cross Sections", in Proc. Third
International Conference on Computer Vision, 587-591. IEEE Computer Society
Conference. Osaka, Japan.

[24] Terzopoulos, D. and Waters, K. (1990), "Analysis of Facial Images Using Physi-
cal and Anatomical Models", in Third International Conference on Computer Vi-
sion, 727-732, Osaka, Japan.

[25] Carlbom, I., Terzopoulos, D., and Harris, K M. (1991), "Reconstruction and Vi-
sualizing Models of Neuronal Dendrites" in Patrikalakis, N. M., editor, Science
Visualization of Physical Phenomena, 623-638. Springer-Verlag, New York.

[26] Gabriel Taubin, "An Improved Algorithm for Algebraic Curve and Surface Fit-
ting" in International Conference on Computer Vision, May, 1993.

40 Final Technical Report

•

[27] Gabriel Täubin, Fernando Cukierman, Steven Sullivan, Jean Ponce, and David
J. Kriegman, "Parameterizing and Fitting Bounded Algebraic Curves and Sur-
faces" in Computer Vision and pattern Recognition, 1992

[28] Gabriel Taubin, Ruud M. Bolle, and David B. Cooper, "Representing and Com-
paring Shapes Using Shape Polynomials", in Computer Vision and pattern Rec-
ognition, 1989.

[29] Richard Szeliski, David Tonnesen, and Demetri Terzopoulos, "Modeling Surfaces
of Arbitrary Topology with Dynamic Particles", in Computer Vision and pattern
Recognition, 1993

[30] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetter-
ling, in Numerical Recipes in C, The Art of Scientific Computing (Cambridge),
Chapter 10.

Final Technical Report 41

42 Final Technical Report

•

4 Surface Approximation of a Cloud
of 3D Points

Chia-Wei Liao and Gerard Medioni
We present an implementation of deformable models to approximate a 3-D sur-

face given by a cloud of 3D points. It is an extension of our previous work on "B-
snakes" [44] and [42], which approximates curves and surfaces using B-splines. The
user (or the system itself) provides an initial simple surface, such as a closed cylinder,
which is subject to internal forces (describing implicit continuity properties such as
smoothness) and external forces which attract it toward the data points. The problem
is cast in terms of energy minimization. We solve this non-convex optimization prob-
lem by using the well known Powell algorithm which guarantees convergence and
does not require gradient information. The variables are the positions of the control
points. The number of control points processed by Powell at one time is controlled.
This methodology leads to a reasonable complexity, robustness, and good numerical
stability. We keep the time and space complexities in check through a coarse to fine
approach and a partitioning scheme. We handle closed surfaces by decomposing an
object into two caps and an open cylinder, smoothly connected. The process is con-
trolled by two parameters only, which are constant for all our experiments. We show
results on real range images to illustrate the applicability of our approach. The ad-
vantages of this approach are that it provides a compact representation of the approx-
imated data, and lends itself to applications such as non-rigid motion tracking and
object recognition. Currently, our algorithm gives only a C continuous analytical de-
scription of the data, but because the output of our algorithm is in rectangular mesh
format, a C1 or C2 surface can be constructed easily by existing algorithms.

4.1 Introduction
Range sensing is a mature technology, and there are many methods, such as

time of flight and MRI, collect 3D data based on this technology. In addition to this,
3D data can also be obtained in passive ways like stereo and shape from X methods.
The data obtained from the above sources is in the form of points.

But, in computer vision, what we need are some properties such as the curva-
ture, normal, and principal directions. These quantities relate to the underlying sur-
face, which is not made explicit in the original data. Furthermore, it is even more
difficult if some ordering relation among the data points is not known. This happens
mainly when we gather data points from various sources. Analytical surface construc-
tion of a cloud of points (boundary points of the object) becomes important because it
is much easier to extract the features from an analytical surfaces. So, we need some
tools to construct an analytical description (for example, surface) for the collected 3D

Final Technical Report 43

data. A deformable model, which can give a analytical surface representation over a
cloud of 3D data points, is a good candidate for this purpose.

The idea of fitting data by a deformable model can be found in the work of Kass
et al. [41] in 2D. Such models are generalized in 3D by the same authors [57] for a sur-
face of revolution.

Recently, Cohen et al. [34] have expressed the surface fitting problem as a
functional minimization problem. They enhance performance and numerical sta-
bility using variational approach and Finite Element Method. Terzopoulos and
Metaxas[55] present a physically based approach to fitting complex 3-D shapes us-
ing a class of dynamic models which can deform locally and globally, and satisfy the
conflicting requirements of shape reconstruction and shape recognition. Based on
the elastic properties of real materials, Pentland and Sclaroff [47] propose a closed-
form, physically based solution for recovering a 3-D solid model from collections of
3D surface measurements. A closed-form solution can be obtained in their system
using Modal Dynamics. Nastar and Ayache's approach [46] is similar to Pentland's,
but they delete a nonlinear term in the physics governing equation, and then the
computation is simplified. This way they can speed up the fitting process. Ter-
zopoulos and Vasilescu [56], motivated by concepts from numerical grid generation,
use adaptive meshes that could sample and reconstruct intensity and range data.
In their recent work [58], they develop some algorithms to handle the discontinuity
problem, and by subdividing the adaptive meshes, reasonable results can be ob-
tained. Delingette et al.[35] model an object as a closed surface that is deformed
subject to attractive fields generated by input data points and features. Features
affect the global shape of the surface while data points control local shape. Sinha
and Schunck [51,52] use weighted bicubic splines, which are able to interpolate
data with discontinuity without much distortion, as a surface descriptor. A regu-
larized least square fit with the addition of an adaptive mechanism in the smooth-
ness functional is applied in order to make the solution well behaved. Minimizing
the energy by handling the fitting B-spline surface independently along parame-
ters u and v and interpolating the external energy field, Gueziec [36] obtains good
fitting results efficiently in terms of time and space complexities. Mclnerney and
Terzopoulos [43] apply a dynamic balloon model and finite element method to re-
construct a 3D object, their model can give the information to measure the differ-
ential geometric properties of the fitted surface. Muraki [45] uses a "Blobby" model
for the shape description. In his approach, an potential energy field is constructed
through the "primitive," realized as an implicit function F(P)=T. By splitting one
selected bad primitive into two at a time, and fitting them to the data, the shape of
the object can be retrieved. Hoppe et al.[S8] propose an algorithm based on the es-
timated tangent plane of each sampled data point, and then a Riemannian Graph
is constructed using EMST (Euclidean Minimum Spanning Tree). The contour of
the object can be derived from this graph. Solina's approach [53] is based on super-
quadrics, and several functions concerning bending, tapering, and cavity deforma-

44 Final Technical Report

tion, are employed to adapt the superquadrics to the data points. Han et al.[37]
introduce hyperquadrics, which is a generalization of superquadrics, for shape re-
covery from range data. Their model can represent any arbitrary convex shapes.
Huang and Goldgof [39] develop an algorithm similar to Vasilescu and Terzopoulos's.
Their algorithm differs mainly in the way the meshes are subdivided. Instead of ad-
justing the stiffness of the spring to fit the local properties of the data, they update
the patch size adaptively by adding or deleting nodes appropriately. A new node is
added between two neighboring nodes if they are far from each other, and two neigh-
boring nodes are merged if they are very close to each other.

To summarize, most of the algorithms described above either require many pa-
rameters, or cannot guarantee convergence (partially due to the use of gradient de-
scent to minimize the energy). Our proposed algorithm can deal with these problems
appropriately. In our approach, we apply a tested numerical method which guaran-
tees convergence, and through an coarse-to-fine approach and a partitioning scheme,
the computational time is kept in check.

4.2 Description of our approach
Most of the algorithms described earlier are suffering from long computation

time and large space complexity. Furthermore, sometimes due to the instability of the
numerical methods, such as gradient descent, the result might be bad because of over-
shooting. It is not easy to detect over-shooting, let alone to backtrack and tune the
stepsize. Most algorithms attacking this problem are based on gradient descent. Here
we adopt Powell, a much more accurate and stable method. Through some mecha-
nisms in our algorithm, the computation time is kept in check. The formalism we are
about to establish amounts to deforming the initial surface to conform as closely as
possible to the given 3D data points. This is achieved by defining an attraction force
field around these data points to bring the initial surface closer to them. The initial
surface is updated by a function minimization algorithm, Powell. Currently, the sur-
face consists of C° rectangular mesh. In a word, we treat the whole process as mini-
mization problem - given an initial guess, which may be a cylinder, we find the local
minimum of the energy function by tuning the variables (the positions of the control
points).

The total energy of the fitting surface is defined as below:

Etotal = Wint*Eint + Wext*Eext

Eext expresses the distance between the fitting surface and the data points. E^nt

depends on the constraints, such as smoothness. The definition of E^nt is subject to
change when different constraints are applied. W^t and Wext are the corresponding
weights. Without loss of generality, Wext is always 1 in our system.

Once a C° surface is obtained, it is also possible to upgrade it to C1 using existing
algorithms [50], although we do not address this point here. Due to the convex-hull

Final Technical Report 45

property of B-spline function, we can also use these C° control points to construct a
C1 or C B-spline surface without significant error when there is a large number of
control points and these control points are close to one another.

4.2.1 Global parameters

In our system there are only two global parameters set at the beginning, which
makes the whole system easy to control.

The first is ERRORforeshoid' which is used to determine the goodness of the patch
on the mesh. The second is RATIOext_to_int, which is used to set the initial respective
contributions of the internal and external energies. These two global parameters will
be explained in details in the following section. It is worth noting that all our data sets
were processed with the same parameter values.

4.2.2 Surface Representation

First, how do we represent a surface? The most common primitives are triangu-
lar and rectangular meshes. The triangular mesh is more general, but suffer from the
following drawbacks:

a) Eventually, we would like to construct a smooth surface, but it takes high de-
gree polynomials to construct a C1 or C2 surface from the triangular mesh, which is
expensive. In most cases, the algorithms for this purpose require the gradient infor-
mation of each point, which does not come with the triangulation, and needs to be es-
timated. The rectangular mesh can be upgraded it to C1 or C2 easily through B-spline
or Bezier functions.

b) For energy minimization, we need a method to estimate the smoothness of the
surface. It is not easy to estimate the smoothness of the triangular mesh, compared
to the rectangular mesh, whose derivative information can be evaluated with simple
mathematics. In a way, each patch on the triangular mesh is parameterized by differ-
ent parameters, which makes the estimation of the smoothness difficult.

In our algorithm, we need to sub-divide some patches on the mesh after each it-
eration. Sub-dividing the patches might lead to degenerate patches, which are points
or lines. This might cause serious numerical problems later. We avoid this by always
dividing the patch into four sub-patches at the center point.

The rectangular mesh, of course, presents problems of their own: it is harder to
construct a closed smooth surface from the rectangular mesh because of the poles. But
we can get around this problem, and then upgrade the closed rectangular mesh to C1

closed surface.

Here, we currently use a Linear B-spline surface for its efficiency in computation
time and some geometric properties we need. For a Linear B-spline surface, each con-
trol point only affects its four neighboring patches. This makes it very easy to sepa-
rate the whole surface into independent strips.

46 Final Technical Report

4.2.3 The Powell minimization procedure

What we are performing now is simply the minimization of energy ^oto; by ad-
justing the points on the mesh. Gradient descent is not very reliable. For our applica-
tion, an eligible numerical method should meet the following requirements:

1) It should be able to handle discontinuous functions,

2) it should work when the derivative information is unavailable,

3) it should be reliable and accurate,

4) the time complexity should be reasonable, and

5) convergence should be guaranteed.

Powell is a good candidate, though might be slower than gradient descent. But,
in our application, it is not really the case because (1) we are using a coarse-to-fine
approach and only the bad patches are handled at each iterations and (2) the weight
Wint of smoothness constraint is changing implicitly as the process goes on. So, the
gradient descent procedure, if applied, has to inverse a completely different matrix
every time it is invoked even if the number of variable is the same (due to different
Wint). It is impractical to pre-compute all inverse matrices ahead of time because
there are infinite number of possible matrices. In contrast, Powell does not have to
invert a matrix. Inverting a huge matrix, which might happen fairly often in our ap-
plication, is time consuming. So, here the whole process should not be slowed down
much by Powell.

The Powell algorithm is itself a direction set method for function minimization.
Assume the function to be minimized has N variables. With an initial guess, which is
an N-tuple vector, Powell can work by producing spontaneously mutually conjugate
(non-interfering) directions, and searching along these directions sequentially for the
(local) minimum. Because of the power of Powell, we can define almost any kind of en-
ergy we need. If we have any a priori about our target, we can define it in terms of the
energy and apply it to Powell. For instance, if the approximate area AREA of the ob-
ject is known, we can define an energy, Earea = I AREA - AREAßtting surface I, using this
information. According to our experiments, Powell is efficient, compared to the regu-
lar gradient descent approach, on the aspect of the number of control points needed
to fit the data points. For more information, we refer the reader to [49,33,31,40,48,54].

If too many control points need to be handled simultaneously, Powell can become
very slow. In our algorithm, this issue is addressed by a partitioning scheme, ex-
plained later, and thus Powell is always called with a limited number of variables, and
we can get reasonable results in our experiments in a few minutes for simple objects.

4.2.4 Coarse-to-fine approach

Our approach is iterative, and we start this fitting process with a small number
of control points (patches). At each iteration, we categorize the patches into two class-

Final Technical Report 47

es, good and bad, based on their associated external energy (error fit). Only the control
points belonging to the bad patches are adjusted to minimize the energy (error) of the
fitting surface, and then all patches are subdivided into four sub-patches after the fit-
ting process. In our current implementation, the user specify the number of the iter-
ations. So, the process terminates after we have iterated a certain number of times.
The numbers of the control points and patches increase as the iteration goes on. Pres-
ently, we iterate at most three times, which means that we only go through at most
two subdivisions. The coarse-to-fine approach helps improve the performance in time
very much. The global information can be acquired in the first 2 iterations, and the
following iteration is used to highlight the surface details.

4.2.5 External energy Eext

The external energy is a potential energy which attracts the fitting surface to-
ward the data points. The result of the energy minimization highly depends on the
external energy field. In our implementation, we define the external energy of a point
on the fitting surface to be the distance to the nearest data point. The fitting surface
can approach the data points when the external energy of the fitting surface is being
minimized.

The external energy, which derives from the data points, can decide the success
of the fitting process. A good definition of the external energy should has reasonable
time and space complexities when the external energy of the fitting surface is being
calculated. One possible solution to this is to define the external energy also from the
data point's viewpoint. In addition to the energy field, we might define one more ex-
ternal energy based on the distance between each data point and the fitting curve.
This might bring about another serious problem. How do we determine the corre-
sponding point on the fitting curve for each data point? Usually, this information is
not available. We might define the corresponding point to be the closest point on the
fitting curve. But in reality the nearest points are not necessarily the corresponding
points, and it is possible for one point on the fitting curve to correspond to more than
one data point as shown in Figure 4.1 when the target is concave. In (a), the concave
polygon, composed of solid lines, is the data points, and the dotted rectangle is the ini-
tial fitting curve, (b) shows possible wrong attachments based on the closest point cri-
terion. Data points belonging to different parts of the target might be attached to the
same part of the fitting curve, and, in consequence, the fitting curve could not capture
the profile of the target faithfully as shown in (c). One more problem with this ap-
proach is that it is quite expensive, as we need to calculate the closest point for each
data point every time the external energy is evaluated.

Our proposed method is efficient in the time and space complexities. We use an
energy field represented by a cube composed of voxels. Each voxel contains the dis-
tance to nearest data point, and this distance is the energy of the voxel. The external
energy of the fitting surface is calculated by sampling points on the surface and get-
ting the energies of the voxels they fall in. This way, we can compute the external en-

48 Final Technical Report

(a) Data points and initial guess (b) Possible wrong attachments (c) Possible result
Figure 4.1 A possible mistake for the closest point approach

-\y~

Target object
(a)

Fitting curve

10123456789
2W2345678
32T\l234567
432TH123456
4432Jkl2345
33332lkl234
222222^123
llllllUn£2

111111111111
22222222222

Target curve

10123456789
21A12345678
32lkl234567
432i\123456
44321A12345
333321X1234
222222W123
niiimfin
OQpmOQQ&l
111111111111
22222222222 '
Fitting curve

\"J missing part
Figure 4.2 Problems with the long-distance external energy

ergy at a low cost, and the space complexity, which is in proportion to the number of
voxels in the cube, is reasonable.

The problems with this definition of distance, as the ones commonly encountered
with morphology operations, is that it rounds corners and cannot handle cavities.
These two problems are illustrated in Figure 4.2 below. In (a), the resultant curve
only gives a dimple instead of going deep into the cavity, (b) shows the distance field
and the target curve, and the resultant fit, which rounds the corner. The numbers in
this example indicate the external energy at each point, and the pixel with energy
zero is the data point. Any algorithm based on the shortest distance to the data points
cannot be immune to these problems. To palliate this, we define two external energy
fields, a long-distance one and a short-distance one. The long-distance external ener-
gy field is rather coarse, and measures the distance from each voxel to the nearest
data point. Its main purpose is to quickly pull the fitting surface towards the data.
The short-distance one is a more accurate measure.

At the beginning, we use the long-distance external energy, and when the fitting
surface is close to the fitted object as measured by the long-distance external energy,
we switch to the short-distance external energy to improve the results.

Long-distance external energy field:
The long-distance field is computed by a 3D Blum Medial Axis Transform [32] in

a digitized cube G{X,Y£) typically 150 x 150 x 150. This algorithm is straightforward:

Final Technical Report 49

The corresponding
corners.

122 0 122 200 w
2Q0 122 K122

122 a 122
122 "1,1
K J4T"*

{!

(a) the long-distance external energy. (b) the short-distance external energy.

Figure 4.3 An example of the long-distance external energy field and its
corresponding short-distance external energy field

Every voxel is initialized to a very large number, except the data voxels which
are zero. We then put a one in any voxel for which any of its neighbors contains a 0,
and so on.

Short-distance external energy field:
Once the surface is close enough (the distance is smaller than H, typically 3), we

redefine the energy field by averaging the values of the original field in an HxHxH
neighborhood. Of course, we leave the 0 values (data) unchanged. This is equivalent
to interpolating the original values. Figure 4.3 shows an example illustrating the dif-
ference between the long-distance and the short-distance external energies. It should
be clear to the reader that the corner in the short-distance energy field is more salient
than in the long-distance energy field.

Figure 4.4 shows an example of the effect of the short-distance external energy
field. In this example, (a) is the initial data, which is a head, (b) is the fitting result
applying the long-distance external energy field only, and (c) is the fitting result ap-
plying both the long-distance and the short-distance external energy field, (d), (e), and
(f) are cross-sections of (a), (b), and (c), respectively. We can clearly see that we obtain
a better fit if the short-distance external energy is applied. The use of short-distance
external energy can also bring down the computational time to some degree.

We could combine these two external energies into one. The problem is that we
use one byte to store the external energy of each voxel in our implementation, and the
span of the energy value of the voxel for short-distance external energy field is much
smaller, so we can get better quantization (resolution) for the short-distance external
energy field, and thus obtain a better result. This is why we have two separate exter-
nal energy fields here. We switch to the short-distance external energy field after the
first iteration in our implementation.

In summary, the long-distance external energy field is coarse and brings the sur-
face close to the data, and the refining work is left to the short-term external energy
field.

50 Final Technical Report

(b) (c)

(d) (e) <f>

Figure 4.4 An example of the effect of the short-distance external energy

4.2.6 Internal energy Ej^

The internal energy should be computed as a measure of the curvatures on the
surface. Here instead, we measure it as the sum of the digital curvatures on some
curves drawn on the surface. The choice of these curves will be explained later.

For a B-spline surface, parameterized by u and v, with MxN control points, we
can construct M (resp. N) snakes, each of which contains N (resp. M) control points,
directly from the control points along the u (resp. v) direction. We use the second de-
rivative of these snake to represent the internal energy. Due to the high similarity be-
tween the shapes of the control points and the fitting surface, we can just directly use
the control points to estimate the internal energy. The way we estimate the internal
energy brings down the computational time since the internal energy is calculated
very frequently. Suppose we have a curve composed of points Pj, 0^i<N, the internal
energy is defined as below:

iV-l

int ~ 2^ I
i = 1

i+p
i+i 2jy»

The reason why we define the internal energy in such a simple way, which has
no arc length as the denominator, is that the length of the snake (curve) cannot
change much when the fitting surface is close to the fitted object. We always place
much more weight on the external energy than internal energy, so we don't expect the
snake length to be influenced much by the internal energy. This formulation favors
coplanar and equidistant point arrangements.

Final Technical Report 51

4.2.7 Choice of the initial surface

Now we move on to how the initial surface is set up. Currently, we have two
methods for setting up the initial surface.

The first is to build a cylinder that covers all the data points as the initial sur-
face. The second is based on a spherical coordinate representation. We compute the
center of mass of the data first as the center of the initial sphere, then sample data
points in NQXN<J> directions, and find out the farthest data point in each direction. The
radius in each direction is the distance between the center of mass and the corre-
sponding farthest data point. We use this deformed sphere as an initial guess. If we
do not find a data point in a given direction, we use the average of the radii in the
neighboring sampled directions as the one in this direction.The caps of these two ini-
tial surfaces are constrained to be planar.

We always start with the second approach, which can give a better approxima-
tion of the data. If we are unable to compute the radius in many (more than 18 for
12x17 sampled directions) directions, we abort this choice and revert to the cylindri-
cal initial guess.

4.3 Overview of our algorithm

4.3.1 Issues

Several problems come with the algorithms dealing with deformable model:

1) Huge computational time and space: Assuming MxN control points on the fit-
ting surface, there are 3MN variables for this surface. Theoretically, we can
just inject these 3MN variables into a minimization algorithm to minimize the
energy of the fitting surface. This approach turns out to be impractical due to
the unbearable computational time when 3MN is large. Furthermore, most
minimization algorithms need a matrix of size (3MN)X(3MN), which results in
huge space complexity also. An adaptive approach can just alleviate these
problems, but cannot avoid these problems in the worst case, especially when
all control points or patches are bad.

2) Constructing a smooth closed surface from the B-spline control points: This is
no problem if the surface is constructed from the triangular mesh, but we
choose rectangular mesh, and we have already given the reasons in the previ-
ous section. The problem is that the poles are not smooth if we try to construct
the closed smooth surface, which is topologically equivalent to a sphere, direct-
ly from the control points. It is because these two poles are shared by many de-
generate patches (triangular patches) around them.

3) A good approximation of the data as the initial surface: The quality of the fit-
ting result depends on the initial surface, and we would like the result to be in-
variant to the initial surface as long as the initial surface is not too bad.

52 Final Technical Report

M pole

Before fitting Cj^5£^^

meridian

After fitting

pole

cap Q>f^^

Figure 4.5 The initial closed surface and the definitions of Pole,
Meridian, and Cap

4) The convergence of the surface to the data points: The convergence of the fitting
process should be guaranteed.

Now, we define some terms for further use. We define a Cap to be the triangular
patches formed by a Pole and its adjacent control points. So, we always have two
Caps. A Meridian (a line of constant u in parameter space) is defined to be the line
connecting the two Poles, as depicted in Figure 4.5 .

4.3.2 The algorithm

A flowchart of our algorithm is in Figure 4.6 .

Both the cylindrical and spherical initial surfaces we adopt are topologically
equivalent to a sphere. In our algorithm, we consider a sphere as composed of three
parts, which are two caps and an open cylinder as shown in Figure 4.5 . These three
parts are processed separately in our algorithm.

Instead of injecting all MxN control points into the minimization procedure
(which is possible but extremely expensive), we decompose the problem into a curve
fitting problem followed by a (simpler) mesh fitting problem.

Given that the caps are already in place, we select every other meridian and
move their (M-4) control points, which are not shared with the two caps, to minimize
their energy. We then select the remaining meridians and move their (M-4) control
points, which are not shared with the two caps, to minimize the energy of the related
patches this time. It is important to note, however, that only the bad segments (patch-
es or curves) are injected into the minimization procedure (after the energy minimi-
zation, we can guarantee that the associated energy of the bad segments is reduced,
but some segments with higher external energy might still be bad). Then, we subdi-

Final Technical Report 53

Start

I
Initiate fitting surface
Set ERROR^eshojd.
Set RATIOext.to.int;

Fit surface

Stop

I
Stage 1: Fit polar caps

Stage 2: Curve fitting (by adjusting every
odd(resp. even)-indexed meridian)

Stage 3: Mesh fitting (by adjusting the rem-
aining even(resp. odd)-indexed meridians.

Stage 4:
Subdivide

An inner loop for the
first two iterations.
It loops until no
more improvement.

Figure 4.6 The flowchart of our algorithm

vide all patches in four, and repeat the process until some terminating condition is
met.

Our algorithm is a 4-stage one, and during the first three stages, Powell is called
frequently for energy minimization.

First, we fit the caps to the data, and force the caps to be planar. This way, all
tangent vectors in all directions at the pole are coplanar. When fitting, the cap can
change its shape, subject to the planar constraint, in order to get the best fit. Thanks
to this planar constraint, the constructed surface is smooth even at the poles.

Second, we perform the curve fitting to some meridians to locate the profile of
the target, and this is done by applying energy minimization to these meridians. We
select the odd (resp. even)-indexed meridians and fit them to the data by treating
them as approximating linear B-snake[44]. The only difference between a B-snake
and a selected meridian lies in the internal energy. When calculating the internal en-
ergy of these meridians, we not only consider their own smoothness but also the
smoothness between them and their immediate neighboring even (resp. odd)-indexed
meridians (an example is depicted in Figure 4.8). Then we let them adapt to find the

54 Final Technical Report

profiles of the target. These selected meridians are not influenced much by the fitting
surface (by the internal energy) when moving, so they can detect the object more ac-
curately. Please notice that the external energy of these selected meridians is defined
on the curve without considering the surface nearby. The surface is separated by the
selected meridians into independent "strips" in a way, and each strip contains an even
(resp. odd)-indexed meridian. Each strip is bounded by two odd (resp. even)-indexed
meridians.

Next, we fit each strip to the target. We select meridians of the other polarity,
even (resp. odd)-indexed, to do the mesh fitting for each strip. We treat them as regu-
lar snakes, except that they are tuned to minimize the external energy (error) of the
strip. This means the external energy is not only from the curve but also from the area
it defines.

The fourth stage is subdivision. If the fitting surface up to now is not satisfactory,
we subdivide all rectangular patches into four and then go to stage 1; otherwise, exit.

4.3.3 Summary and discussion

In summary, in the first step, we fit the caps. Next, the odd (resp. even)-indexed
meridians are used to find the profile or frame of the target, and the surface is divided
into strips by these meridians. Then the even (resp. odd)-indexed meridians are ap-
plied to fit the strips to the data. Finally in stage four, we subdivide the surface, that
is, we divide each rectangular patch into four. We break the 3D surface problem into
a set of 2D (linear) B-snake problems in a way. Also notice that, at each step, although
we have different ways of calculating the internal energy Eint, and the external en-
ergy Egxi, the basic idea is the same.

We can see that this is a typical coarse-to-fine approach. We start with few con-
trol points and large patches, then we increase the number of the patches and control
points in later iterations.

Our algorithm overcomes the time and space complexities, and closed surface
problems by (1) breaking the 3D surface problems into several 2D snake problems,
which is shown in stages 2 and 3, (2) coarse-to-fine approach, and (3) forcing the cap
to be planar, which is explained to stage 1. Due to the robustness of Powell, we do not
need a good initial guess, and two examples are shown in Figure 4.17
andFigure 4.18 . Also, the Powell method guarantees convergence.

Please notice that stages 2 and 3 can be performed very fast when there are few
control points. We can take advantage of this to get more reliable global information.
We repeat these 2 stages until there is no further improvement in the first 2 iterations
(in the first 2 iterations, there are not many control points in the meridians or caps).
It is almost impossible to rectify the error from the first 2 iterations, which is consid-
ered global, by later iterations. So, in our implementation we add a inner loop to these
two stages for the first two iterations.

Final Technical Report 55

The computational time could also be largely reduced by parallel processing. It
is obvious that (1) the two caps are independent of each other, (2) all odd (resp. even)-
indexed meridians are independent of one another, and (3) all even (resp. odd)-in-
dexed meridians are independent of one another, so each stage can be performed in
parallel.

There are two important parameters, ERRORtnresnold and RATIOext.to-int> set by
the user in this algorithm.

ERROR^reshold *s used to determine whether or not a patch of the surface or a
span of the snake is good. We only process the bad parts of the snakes and the bad
patches on the fitting surface during each iteration. At each iteration, a patch (or a
span) is good if its average external energy is smaller than ERROR^es}^; other-
wise, it is bad.

RATIOext_to_jnt specifies the relative importance of the external energy with re-
spect to the internal energy. After setting RATIOext.t0-int' two internal parameters
Wext and Wint, concerning the weights of the external and internal energies, are set
by the system. Wext is always 1, and Wint is set as below:

E
TTT _ current -ext

^current - int X "^ ^ ^ext -to- int

where Ecurrent.ext is the current external energy of the fitting surface or snake,
anda

ECurrent-int is *ne current internal energy of the fitting surface or snake

Every time Powell is invoked, W^t is re-calculated based on RATIOext.tQ.int and
the current internal and external energies of the fitting surface. So every time, Powell
may be called with different W^t-

The reasons why we set RATIOext-to-int is that Wext and Wint are different
measures and thus on different scales. RATIOext-to-int serves to normalize two ener-
gies. RATIOext_to-intis always greater than 1; otherwise, the fitting surface is unlikely
to conform to the data points, as we now explain.

As we subdivide the surface after each iteration, the fitting surface is approach-
ing the real object. We have more confidence in the fitting surface. So it is suggested
that the internal energy weight be reduced as the process goes on. One more advan-
tage of RATIOext.to.uit is that the weight of the internal energy tends to decrease as
the process goes on, because Eexb decreases faster than E^t does when RATIOext-to-int
is greater than 1. By setting RATIOext_t0.int t° be a constant greater than 1, we can
diminish the importance of the internal energy after each iteration implicitly, and
thus obtain a better fitting surface.

56 Final Technical Report

On the contrary, if we set Wint directly and keep it unchanged, then the internal
energy tends to dominate at the later iterations because the external energy decreas-
es faster than the internal energy does. This might not lead to a good fit.

ERRORthreshold and RAT^ext-to-intare 1-° and 10 in a11 of our experiments.

4.4 Details of our algorithm
Now, we elaborate on the four stages concerning the cap, curve and mesh fit-

tings, and subdivision.

Stage 1. Cap fitting

By treating the pole as 2 or more control points, we can achieve C° continuity at
the poles on the caps when constructing the fitting surface. For example, for quadratic
B-spline surface, we can achieve C° simply by duplicating the control points at the two
poles. The caps of the surface present problems when we try to upgrade the surface
from C° to C1, because the poles will not be C1 and are singular. This is an inherent
limitation of the rectangular mesh no matter what surface construction algorithms
(for example, B-spline and Bezier) are employed. But if the control points are copla-
nar, then the tangent vectors at the poles along all directions will be coplanar. Based
on this, we constrain all the points, including the pole and its adjacent control points
to be coplanar. This way the surface constructed can be smooth everywhere.

The cap can be represented by the following formula, which contains (N+5) vari-
ables, where N is the number of the adjacent points of the pole. Initially, cp and \\r are

(x^y^z.) = [R2
icoaei,R

2
i8iaBi,0)x

1 0 0

0 coscp sincp X

0 -sincp coscp_

cos\j/ sin\j/ 0

-sin\y COSY 0
0 0 1 ,0£i<N.

where (xp,yp,zp) is the coordinate of the pole,

N is the number of points adjacent to the pole,
(x^y^Zi) are the coordinates of the ith point adjacent to the pole,

qi=2p*i/N,
R2

t is the distance from (xp,yp,zp) to (x^y^),
cp is the angle of the rotation around the x axis, and
\\r is the angle of the rotation around the z axis.

zero. The distance from the pole to an adjacent point should be always positive, so we
use the square root of the real distance as the variable to guarantee that the distance
is positive. The variables in this formula are Xp, yp, zp, cp, y, and Rt ,0<i<N, so the num-
ber of variables is N+5. Initially, these variables can be set in accordance to the initial

Final Technical Report 57

Normal vector determined by two

parameters <P and ¥

Cap

pole

\Pp=(xp>yp>zp) 2

pi,i=(xi>yi>zi)

Pl,i-l=(xi-l>yi-l>zi-l)

3,i-l

3,i+l

Pi i and Pi i-i are two consecutive control points on the row
immediately adjacent to the pole.

Figure 4.7 An example of the cap

closed surface (the caps of the initial surface should be planar surely). An example is
depicted in Figure 4.7 .

The internal energy Eint for the cap is as below:

Let Pii and P2;j, (Ki<N, be the two closest rows to the pole (P^ is the row imme-
diately adjacent to the pole.).

/2V-1

E = int Y,\\PP
+P2J-lPu\\2 + \\PLi+P3J-2P2A2 + \\PLi-l+Pl,i-2PUi+l

^i = 0

58 Final Technical Report

The external energy for the cap is:

JV-l

i = 0

Where Atiis the area of triangle PpPi^P^i+i,
Et i is the average external energy of triangle PpPi(iPi,i+i,

Ayj is the approximate area of rectangular mesh Pi,iPi,i+iP2,i+iP2,i, and
Eri is the average external energy of rectangular mesh

Pl,iPi,i+ip2,i+iP2,v

The area factor is introduced in the above formula because the contribution of
each patch should be in proportion to its size.

Eti and Erjcan be estimated by

1) sampling a certain number of points in the patch,

2) finding the energy of each point from array G denned in the previous section,
and finally

3) averaging the external energy.

Ayj can be coarsely estimated by dividing the rectangular patch into four trian-
gles through the central point, and then summing the area of every triangle.

Every time before Powell is called, the weights Wint and W^ are determined by
RATIOext.to.jnt, the current internal energy Eint) and external energy Eext of the cap.
Then, Powell is called to minimize Efotal =(Wint*Eint + W^E^) of the cap by ad-
justing those (N+5) variables. There are two independent caps on the surface, so this
step will be executed twice.

Stage 2. Curve fitting
Suppose there are MxN control points on the surface, that is, there are M rows

and N columns. Here, N is always even. Let N=2K. There are N Meridians on this sur-
face.

Now we select the Meridians with odd (or even) index to do the curve fitting (and
the rest are for the mesh fitting, explained later), so there are K such meridians.

At the beginning of this stage, these selected odd(resp. even)-indexed meridians
are the same as the corresponding meridians at the previous iteration (or, for the first
iteration, the corresponding meridians of the initial sphere) except for those control
points shared with the caps.

We treat each odd(resp. even)-indexed meridian individually as if they are inde-
pendent of one another. Each odd(resp. even)-indexed meridian is just like an ordi-

Final Technical Report 59

nary snake except that it is also influenced by the control points on the two
neighboring Meridians.

The first two and last two control points of the odd(resp. even)-indexed meridian
are shared with the caps, so these four points are supposed to be good and won't be
tuned under any situation. Each meridian has M control points and (M-l) spans. Be-
cause the first and the last spans are fixed by the caps, we only need to handle at most
(M-3) spans for each odd(resp. even)-indexed meridian when doing curve fitting.

A odd(resp. even)-indexed meridian is tuned adaptively, and we just deal with
the bad spans of the meridian at each iteration. We check the external energy of each
span. Those spans with average external energy greater than ERRORthreshold are

bad. We find out the bad connected spans (bad connected spans have to be processed
simultaneously). This way, we can classify those bad spans into several groups, and
each group is independent of each others. Let Gs be one of the groups (Gs is itself a
miniature snake in some sense). An example is shown in Figure 4.8 . In this example,
let the solid thick curve, composed of P2i, P31, and P^, be Gs. The dotted and the solid
line segments show the control points involved when calculating the internal energy.
The external and internal energies are as below. In this example, there are 3 control
points P21, P31, and P41 to adjust, which leads to 9 variables injected to Powell.

The average external energy can be obtained by sampling a certain number of
(5 4 \
y lip. ,,+p. ,, -2P. ,n2+ y i|p. n+p. .-2P. j2

L^ \\ 1 + 1,1 r-1,1 1,1|| Z-rfll t. 0 i,2 1, 1||
V£=l i=2 J

E. , int

4

|j 4, 1 tTI,l| I

i= 1

W — V P P ^ext ~]_ |r i, Iri+l,l

where Et is the average external energy of the line segment between P^ and Pi+1 j_.

points, finding the external energy of each sampled point through array G, and then
averaging those external energies. The length of each line segment is considered be-
cause the importance of each line segment should be in proportion to its length.

The weights of those two energies are determined in the same way as we do for
the cap in the previous stage.

Suppose there are Hs control points in Gs, excluding those shared with the caps.

The coordinates of each control point are the three components X, Y, and Z, so
we have 3*HS variables.

For all Gs's on all odd(resp. even)-indexed meridians, we call Powell to minimize

Etotal(= Wint*Eint + Wext*Eext)

of Gs by adjusting the corresponding 3*HS variables.

60 Final Technical Report

poo "Por. P°2

Pw ' Pny- ' Pn
p '. P21 J~ .' p
^20 4 • "22

P30 ■ T P32
P.

'40
k PAH * : P42

p p5i\ : Pc2
P50 - * 5Z

POO ■ - 62

the selected meridian

Figure 4.8 The odd(resp. even)-indexed meridian

poo/'P0i-
P°2

Pjj _
P]0 r —— 7 Pj2

xyJ lv ^ TO ^ v ^ V»1- v- v- V v v. s./ -* *■

P20 v-^'■"'■'"■'■'■'•'■^ P22

^ P3l\.......,..\
P30 »■■■•— :"*""""'""''/' P32

P40)-■:—■::■: 1 '*

P50 /— — v^^-^.^ r52

p 60

K.
the selected meridian

Figure 4.9 The even(resp. odd)-indexed meridian.

We may say that the responsibility of odd(resp. even)-indexed meridians is to
find the frame or profile of the object.

Stage 3. Mesh fitting
The surface now is separated by caps and odd(resp. even)-indexed meridians

into K independent strips, and each strip can be tuned independently now. We select
the rest even(resp. odd)-indexed meridians, and use them to fit all strips to the data
(target). These even(resp. odd)-indexed meridians are fixed in stage 2 for the curve fit-
ting. Each strip contains an even(resp. odd)-indexed meridian.

Final Technical Report 61

At the beginning of this stage, the even(resp. odd)-indexed meridians are the
same as the corresponding meridians at the previous iteration (or, for the first itera-
tion, the corresponding meridians of the initial sphere) except for those control points
shared with the caps.

The responsibility of the selected meridians in this stage is to fit each strip to the
data (target) by mesh fitting (We assume that the odd(resp. even)-indexed meridians
have done a good job in stage 2 here).

For each strip, there are 2*(M-1) patches and an even(resp. odd)-indexed merid-
ian. Because those four patches shared with the caps are supposed to be good by de-
fault, we only need to consider 2*(M-3) patches. Let S be one of those strips. Now we
need to determine the goodness of those 2*(M-3) patches in S. A patch is bad if its av-
erage external energy is greater than ERROR^j-gshoid- We find the connected bad
patches (these bad patches need to be processed simultaneously), and this way the
bad patches in strip S can be classified into several groups.

Let Gm be one of those groups, and Sm be the intersection of Gm and the even(re-
sp. odd)-indexed meridian in the strip. Sm is itself a small snake, and the internal en-
ergy of Gm is calculated through Sm. An example is in Figure 4.9 . In this example, let
the 3 dotted rectangular patches be Gm, and the thick solid line segments composed
of P21, P31, and P41, be Sm. The dotted and the solid line segments show the control
points involved when calculating the internal energy (13 control points are involved),
and the diagonal patches together with the dotted ones are those patches involved
when we calculate the external energy of the even(resp. odd)-indexed meridian (there
are 8 patches involved). In this example, the control points tuned are P21, P31, and
P41, and thus there are 9 variables injected to Powell for this example.

The internal and external energies for the example in Figure 4.9 . are as below:

E. . = mt

(5 4 ^
LIIP. .. +p. ,, -IP. j2+ y lip. „+p. „-2P. J2

II 1+1,1 i-l.l 1,1|| L* || 1,0 i,2 1, 1||
vi=l i = 2 J

E = y y A. ,-E. .
ext Ld 1—1 i.j i,j

I-1./-0

Where £jj is the average external energy of rectangular mesh
^hj^ij+l^i+lj+i^ij+l' andAij is the approximate area of the rectangular mesh.

The way to compute the internal energy is exactly the same as that for odd(resp.
even)-indexed meridian in stage 2, and the way to estimate the area of a patch and
the average external energy is explained in the previous section for the cap.

Suppose Sm contains Hm control points, and then there are 3*Hm variables to be
tuned by Powell.

62 Final Technical Report

Figure 4.10 Subdivision. Notice that no row is added on the cap

For all Gm's on all even(resp. odd)-indexed meridians, we call Powell to minimize

Etotal <= Win^int + Wext*Eext)

of Gm by adjusting the corresponding 3*Hm variables.

Stage 4: Sub-division
At this step, every rectangular patch is divided into four, except those on the

caps. We do not add a new row to the cap because these triangles around the pole are
small already, so adding a new row to the cap might lead to degenerate triangles. This
is illustrated in Figure 4.10 .

These four stages in the flowchart correspond to those in the previous para-
graph. If the cap is already close to the real object, that is, it has low external energy,
then we can skip this stage. The following two stages are to do the curve and mesh
fittings. We have an inner loop for these two stages in the first two iterations. In this
inner loop, we choose the odd-indexed and even-indexed meridians in turns in these
two stages for the sake of fairness. The fourth stage is to do the subdivision. We switch
from the long-distance energy field to the short one after the first iteration.

4.5 Experiments
We now show results from eight experiments on real data. Five of them are on

the tooth, wood, phone, headl (Carol), and head2, respectively. One shows how the fit-
ting surface of the headl experiment evolves, and the last two show the robustness of
this algorithm by giving a very bad initial surface. Then we show one more experi-
mental result on synthetic data, which shows the difference in the surface normal be-
tween the fitting surface and the underlying synthetic surface.

In all of these eight experiments, we start with the same crucial parameters to
show the robustness and stability of this algorithm. ERRORthreshold is 1-0- RATIOext_
to-intisl°-

These experiments are performed on a Sun Sparc-10 workstation. For each ex-
periment, we show the original data and two shaded results. The shaded surface is

Final Technical Report 63

based on the C B-spline surface, which is constructed directly from the control points
obtained (in fact, these control points are for C° B-spline surface). All surfaces shown
here are C and closed, including the two poles.

The general information of the first five experiments is listed in Table 3: and Ta-
ble 3:Because the cap of the surface is represented by a set of parameters rather than
control points, the numbers of control pointsare approximated numbers..

Table 4: Performance Summary (cont.)

size of the external
energy cube

initial average error in
voxels (cylinder initially)

final average error in
voxels (cylinder

initially)

tooth 150X150X150 4.42 0.6

wood 64X64X64 3.0 0.27

phone 150X150X150 5.62 0.39

head 1-Carol 300X300X300 18.00 0.78

head2 300X300X300 20.15 1.18

Table 3: Performance Summary

number
of data
points

number of
control
points

run time (cylinder
initially)

run time (sphere
initially)

number of
subdivision

s

tooth 11841 263 4 mins 3 mins 1

wood 5562 212 1.5 mins 1.0 mins 1

phone 15776 247 4.5 mins N/A 1

head 1-Carol 136082 2632 21.5 mins 14 mins 2

head2 45514 2632 31.5 mins 24 mins 2

In the tooth experiment, we start with 11841 data points. A 150x150x150 cube
is used to store the external energy. The running time is around 4 minutes. There are
around 263 control points used on the resultant surface. The result is in Figure 4.11 .
The initial surface is a cylinder in this experiment, we also tried the spherical initial
surface, and it does not make any significant difference, because the object itself is not
very complex. The surface is subdivided once, which means there are two iterations.
One of the poles is on the top in this experiment, and we can see the top of the tooth
is smooth (the other pole is at the bottom). The average external energy of the surface
point is initially 4.42 voxels, 1.0 voxel after the first iteration, and 0.6 voxel after the
second iteration (one sub-division has been done).

64 Final Technical Report

(a) data points (b) shaded result 1

Figure 4.11 Tooth

(c) shaded result 2

(a) data points

v.--;«m

^■r""'.',:;..-. :■.,■■■

;''-;>^
.-'.V.^

(b) shaded result 1 (c) shaded result 2

■Vvlut:;?

'::,<■«>'»'

(<i) 77zree views o/7/ie distribution of the error in pixel

Figure 4.12 Wood block

In the wood experiment, we start with 5562 data points. A 64x64x64 cube is used
to store the external energy. The running time is around 1.5 minutes. There are
around 212 control points used on the resultant surface. The result is in Figure 4.12 .
The initial surface is a cylinder in this experiment, we also try the other algorithm for
the initial surface, and it dose not make significant difference because the object itself
is not too complex. The surface is subdivided once, which means there are two itera-
tions. The two poles are on the left and right sides, respectively. The average external
energy of the surface point is initially 3.0 voxels, 0.41 voxel after the first iteration,

Final Technical Report 65

n
I mm

v. ^M
(a) data points (b) shaded result 1

Figure 4.13 Phone

(c) shaded result 2

and 0.27 voxel after the second iteration (one sub-division has been done). The distri-
bution of the external energy is shown in (c). The length of each vector in (c) is in pro-
portion to the external energy of the associated surface point.

In the phone experiment, we start with 15776 data points. A 150x150x150 cube
is used to store the external energy. The running time is around 4.5 minutes. Around
247 control points are used for the resultant surface. The result is in Figure 4.13 . The
initial surface is a cylinder. The other initial surface construction algorithm cannot be
applied because the center of mass falls outside the object and we cannot sample any
points in many directions, so the system switches to the cylinder scheme for the initial
surface. The surface is subdivided once, which means there are two iterations. The
two poles are at the top and the bottom, respectively. The average external energy of
the surface point is initially 5.62 voxels, 0.45 voxel after the first iteration, and 0.39
voxel after the second iteration (one sub-division has been done).

In the headl experiment, there are 136082 data points. A 300x300x300 cube is
used to store the external energy. This set of data is from INRIA, by courtesy of pro-
fessor Ayache. We project the data points onto 3D space and fill up the top and bottom
of the head, which are hollow originally. We consider points in the same voxel one
point, so the number of data points here is different from that of the original one.We
also tried both initial surface algorithms. The running time is around 21.5 minutes
for the cylindrically initial surface, and 14 minutes for the spherical one. Around 2632
control points are used on the resultant surface. The results from these two different
initial surfaces are much alike, so we just show the result in Figure 4.14 from the cy-
lindrical initial surface, which is harder. Figure 4.14 a shows the data points, and
Figure 4.14 b and Figure 4.14 c are the results. The computational time is reduced by
spherical initial surface because there is already some geometrical information in it.
The surface has been subdivided twice, which means there are three iterations. The
two poles are at the top and the bottom, respectively. The average external energy of
the surface point is initially 18.00 voxels, 1.45 voxels after the first iteration, 0.88 vox-

66 Final Technical Report

(a) data points (b) shaded result 1
Figure 4.14 Headl (Carol).

(c) shaded result 2

el after the second iteration (one sub-division has been done), and 0.78 voxel after the
third iteration (two sub-divisions have been done). It is interesting to note that our
number of vertices (2632) is significantly lower than the one reported by others. In
Gueziec's [36] experiment on this data, 256x128(=32768) control points are used, and
in Nastar's [46] experiment, 11130 nodes are used. One more difference between our
result and theirs is we form a closed C1 surface with the top and bottom closed.

In the head2 experiment, we start with 45514 data points. A 300x300x300 cube
is used to store the external energy. This set of data is from the Media Lab, MIT. For
the same reasons as in the headl experiment, the number of data points here is dif-
ferent from that of the original one. We tried both algorithms for the initial surface.
The running time is around 31.5 minutes for the cylindrically initial surface, and 24
minutes for the spherical one. There are around 2632 control points used on the re-
sultant surface. Figure 4.15 shows the result. In Figure 4.15 , (a) shows the data
points, and (b) and (c) are the results from the cylindrically initial surface, (d) shows
the initial spherical wire-frame surface, and (e) and (f) show the result from the spher-
ical initial surface. Figure 4.16 shows the evolution of the fitting surface with the cy-
lindrically initial surface, and both the shaded and wire-frame results are shown. The
average external energy of the surface point is initially 20.15 voxels, 1.43 voxels after
the first iteration, 1.21 voxels after the second iteration (one sub-division has been
done), and 1.18 voxels after the third iteration (two sub-divisions have been done). In
this experiment, we can tell that the result from the spherical initial surface is a little
bit better, and can be obtained faster. It is because the spherical initial surface has
already captured some geometrical properties, and thus simplifies the calculation to
some degree. The surface is subdivided twice, which means there are three iterations.

We also performed an experiment to try the robustness of this algorithm by giv-
ing a bad spherical initial surface. The data points here are the same as those of head2
experiment. Suppose there are two directions in which we cannot sample and data
point, and the interpolation scheme fails, then there are two deep cavities on the ini-
tial surface as shown in Figure 4.17 . In (a), we shows the wire frame of the bad spher-

Final Technical Report 67

(a) data points (b) shaded result 1 for (c) shaded result 2 for
cylindrically initial surface cylindrically initial surface

■>%,

%

(d) Spherical initial surface
(e) shaded result 1 for
spherical initial surface

(f) shaded result 2 for
spherical initial surface

Figure 4.15 Head2

ical initial surface with two cavities at the top of the head and jaw. (b) and (c) show
the cavities at the jaw and the top, respectively, (d) is the shaded result after the en-
ergy minimization, (e) and (f) show the counterparts of the cavities in (b) and (c), re-
spectively.The cavities have been filled, and the final surface in (d) is fine. In (e) and
(f), we can also see the poles are well handled, and the poles on the constructed sur-
face, which are at the top and bottom, are very smooth. The computation is around 24
minutes for the experiment. Based on our experiments on data points head2, this al-
gorithm can tolerate up to 18 cavities, and we obtain similar results in around 24 min-
utes. Figure 4.18 shows the experiment on the initial surface with 18 deep cavities,
(a) shows the defective initial surface, and (b) shows the corresponding views of the
final surface. It is evident that all the cavities have been handled. This indicates
strong resistance against the bad initial surface.

From the above experiments, we can see that there is not much difference in the
quality for these two different initial surface schemes, and this algorithm can also tol-
erate, to some extent, the error in the initial surface. The main difference is the com-

68 Final Technical Report

(a) Initial surface. (b) result 1 (c) result 2 (d) result 3

(e) Initial wire frame (f) Wire frame 1 (g) Wire frame 2 (h) Wire frame 3

Figure 4.16 The evolution of the experiment of head 1. (a) is the initial surface
(cylinder), (b), (c), and (d) are the deformed results for each iteration. The
surface has been sub-divided twice, (e), (f), (g), and (h) show the wire frames of
(a), (b), (c), and (d).

(a) One view of the defective initial
surface.

(b) The corresponding view of (a) of
the final surface.

Figure 4.18 A test of the robustness on the defective surface with 18 deep cavities

putation time especially when the fitted object is complex. This shows the robustness
of this algorithm because it works well when good initial surface is unavailable at the
expense of longer computational time.

Final Technical Report 69

The cavity at top

I

The cavity at ja

(a) A spherical initial surface
with two cavities at the jaw and
the top of the head.

v

(b) The cavity at the jaw. (c) The cavity at the top.

"X:,. I.

(d) The shaded result from
the bad spherical initial surface.

(e) The jaw in the final result.

Figure 4.17 A test of the robustness of this algorithm

(f) The top of the head in
the final result.

In headl and head2 experiments, there are discontinuities at the bottom (for
both experiments) and at the top (for headl experiment). They are flat at those parts.
From the results shown so far, we can see those discontinuities come out well because
we reduce the importance of the smoothness constraint as the process goes on, and we
can handle discontinuities.

In Figure 4.19 we show the difference in surface normal between the fitting sur-
face and the underlying synthetic surface. We conduct this experiment because the
normal and the shape of the surface are highly correlated. The normals of the fitting
surface and the underlying object might be different while they are physically very
close to each other. This experiment is to show how faithful our algorithm is in terms
of the normal. Synthetic data are used so we can calculate the normal of the underly-
ing object. It turns out after this experiment that the difference in the normal is rea-

70 Final Technical Report

'^rs?»!^

(a) Raw data (b) Fitting result (c) Error in normal (d) External energy

<&
&$:.

IIU'i

ii"i *\-rt ?.•; i ■' •';:'."."': vv i

L;;A;.;;\V"""'-MI

 Wr fiö .V;3sf

' '''l!iltnfi!};,;'-'>v

(e) Raw data (f) Fitting result (g) Error in normal (h) External energy

Figure 4.19 Estimates of the error in terms of the normal.

sonable using our approach.We use the following two implicit functions to generate
the synthetic data points:

(x2+y2 + (z-a)2) ■ (x2 +y2 + (z + a)2) = bA where a=67.68, and b=68.96.
and

where a=80, b=40, and c=60. x]2 . fy^2

-I +1^1 +1 -I' = 1
a

First we sampled points from these two functions as shown in (a) and (c). A
200x200x200 cube is used to store the external energy, (b) and (f) are the fitting re-
sults, respectively, (c) and (g) show difference in the surface normal between the fit-
ting surface and the real surface, (d) and (h) show the distribution of the external
energy, respectively, and the length of the vector reflect the magnitude of the external
energy at this point. The average external energies of (d) and (h) are 0.224 voxels and
0.5 voxels. The length of each vector in (c) and (g) reflects the difference between the
two corresponding normals of a surface point. These vectors are exaggerated a little
bit so we can see the distribution of the error easier. Please notice high error points
concentrate at the poles. It is because we enforce the planar constraint at the polar

Final Technical Report 71

areas which leads to these artifacts. In the other places, the errors are reasonable. In

Table 5: Errors

size of the
external energy

cube

final
average
error in
voxels

[0,3) [3,
6)

[6,9
)

[9,1
2)

[12,1
5]

>1
5 total

peanut 200X200X200 0.224 4239 310 25 85 0 0 4659

ellipse 200X200X200 0.5 1926 143 54 47 5 0 2175

(c) 4659 surface points are sampled. 4239 points have an error between 0° and 3°, 310
points between 3° and 6°, 25 points between 6° and 9°, 85 points between 9° and 12°,
and no points have an error more than 12°. In (g) 2175 surface points are sampled.
1926 points have an error between 0° and 3°, 143 points between 3° and 6°, 54 points
between 6° and 9°, 47 points between 9° and 12°, 5 points between 12° and 15°, and
no points have an error more than 15°. This information is also shown in Table 5:.

4.6 Discussion

There are several important aspects in this paper:

1. We do not use the traditional adaptive approach for this application because
it is almost impossible to determine whether a patch is good or not correctly. Our new
scheme is a coarse-to-fine approach. It divides all patches after each iteration. It is
still efficient because if a patch is really good, then the only operation applied to it in
the future is just sub-division, which costs very little. This scheme also preserve the
rectangular structure of the surface after each sub-division, which makes generating
smooth surface easier and cheaper. This approach is free from the degenerate patch
problem because a rectangular patch is always divided into 4 rectangular ones.

We prefer the rectangular mesh to the triangular mesh because it is much easier
to construct a smoother surface from the rectangular mesh, and the properties, such
as derivatives, are much easier to obtain.

2. We use linear B-splines. On the one hand, it is the cheapest, and on the other
hand, it might divide the surface into independent strips. If higher degree B-splines
are employed, the relationship between the control points and the patches is more
complex.

3. There is always a large matrix associated with the minimization algorithm,
and the size of the matrix is in proportional to the square of the number of the vari-
ables. This might result in the memory explosion if there are many control points to
handle at a time. Also, the numerical method goes extremely slow under this situa-
tion. We break a 3 dimensional problem down into several 2 dimensional problems,

72 Final Technical Report

and then the space and time complexities can be reduced significantly. We separate
the surface into several strips, so Powell is always called with a limited number of
variables. For example, if the fitting surface has MxN control points, the maximum
number of variables sent to Powell is around 3*(N-4). Only the bad parts of the strips
and the meridians are tuned by Powell. So, in practice, the number of variables is far
below 3*(N-4). The caps only have (N+5) variables, which is also low.

4. We reduce the weight of the internal energy implicitly as the iteration goes on,
because we have more confidence in the fitting surface after each iteration. This way,
the discontinuities of the data can be well preserved.

5. When dealing with an open surface, which is much easier, we just skip the
first stage (for the cap).

6. Powell can handle many kinds of functions. This gives us flexibility to define
the energy for any specific property. Powell may also be replaced by other numerical
methods. Compared to gradient descent, Powell is more accurate and reliable, and in
our application Powell is not necessarily slower than gradient descent. From our ex-
periments, we know our algorithm has significant tolerance against a bad initial sur-
face. We attribute this stability and tolerance to minimization algorithm.

7. Through the coarse-to-fine approach, both the global structure and the de-
tailed information on the fine parts of the object can be acquired at different itera-
tions. The global information, which might be applied to recognition and database
search, is obtained in the first iteration, and the details of the object can be obtained
in the later iterations.

8. Due to the independency among the caps and meridians, our algorithm could
run in parallel, so the computational time could be further reduced significantly by
parallel processing.

9. This system is easy to control because there are only two global parameters to
adjust. In all of our experiments, the same values were used.

10. Overall, this system is reasonable in robustness, accuracy, time complexity,
and space complexity. Its output surface can be easily taken by the other surface gen-
erating algorithm to construct a smooth surface.

There are also some problems left:

1. We cannot handle the object with deep cavities, especially the through ones.
This problem is alleviated by the short-distance external energy, but it is not solved
yet. Futhermore, we also cannot differentiate more than two objects when they are
very close to one another, and we might mistake them for one object. We are develop-
ing some algorithms in 2D to tackle these problems, and we believe they can be ex-
tended to 3D in the future.

•

Final Technical Report 73

2. We need a more systematical way to determine the number of the iterations
needed. Now the number of iterations is specified by the user. In our experiment, we
iterate three times for the complex objects and twice for the simpler objects in our ex-
periments. According to our experiment, reasonable results can be come by in three
iterations. Yet, we would like the system to differentiate the complex objects from sim-
ple ones by itself, so it can determine the number of iterations.

3. We also would like to find a way to set reasonable ERRORti^^^ and RATIO-
ext-to-int directly by the computer. Now, they are set by the user. Under some situation,
we may not know much about the input data, so we would like our system to be able
to set these two parameters reasonably under this situation.

4. The self-intersection of the surface is a potential problem, even though we
have not observed it in practice. Theoretically, this can be solved by adding an energy
term Ejntersection, which is zero when there is no self-intersection, and infinite when
the self-intersection occurs. We can rule out this possibility of the self-intersection if
the there is no self-intersection on the initial surface, because Powell can guarantee
that the function value of the result is always less than or equal to the that of the ini-
tial guess. The problem with this approach is it is too expensive. It is expensive to
check if there is a self-intersection on the surface.

4.7 References
[31] Acton, Forman S. 1970, in Numerical Methods That Work (New York: Harper

and Row), pp. 464-467.

[32] Blum, H. "A Transformation for Extracting New Descriptors of Shape," Proceed-
ings of Symposium on Models for Perception of speech and Visual Form, W
Whaten-Dunn (ed.), MIT press, Cambridge, Massachusetts, 1967.

[33] Brent, Richard P. 1973, in Algorithms for Minimization without Derivatives (En-
glewood Cliffs, N.J.: Prentice-Hall), Chapter 7.

[34] Isaac Cohen, Laurent D. Cohen, and Nicholas Ayache, "Introducing Deformable
Surfaces to Segment 3D images and infer differential structures," Proceedings
of Computer Vision and Pattern Recognition 1991, pp.738-739, Hawaii, 1991.

[35] H. Delingette, M. Hebert, K. Ikeuchi, "Shape Representation and Image Seg-
mentation Using Deformable Surfaces," Proceedings of the Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp.467-472, Maui, HI, June 1991.

[36] Andre Gueziec "Large Deformable Splines, Crest Lines and Matching," Proceed-
ings of International Conference on Computer Vision,1993, pp.650-657, Berlin,
Germany, May, 1993.

[37] Song Han, Dmitry B. Goldgof, and Kevin W. Bowyer "Using Hyperquadrics for
Shape Recovery from Range Data," Proceedings of International Conference on
Computer Vision 1993, pp.492-496, Berlin, Germany, May, 1993.

74 Final Technical Report

[38] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner Stu-
etzle "Surface Reconstruction from Unorganized Points," Computer Graphics,
26, 2, July 1992, pp.71-78.

[39] W. C. Huang and D. B. Goldgof "ADaptive-Size Meshes for Rigid and Nonrigid
Shape Analysis and Synthesis," IEEE Trans, on Pattern Analysis and Machine
Intelligence, Vol. 15, No. 6, June 1993.

[40] Jacob, David A.H., ed. 1977, in The State of the Art in Numerical Analysis (Lon-
don: Academic Press), pp.259-262.

[41] M. Kass, A. Witkin, and D. Terzopoulos, "Snakes: Active Contour Models", in In-
ternational Journal of Computer Vision, January 1988, pp.321-331.

[42] C. W. Liao, and G. Medioni "Representation of Range Data with B-spline Surface
Patches," Proceedings of International Conference on Pattern Recognition 1992,
pp.745-748, Hague, Netherland, August, 1992.

[43] Tim Mclnerney and Demetri Terzopoulos "A Finite Element Model for 3D Shape
Reconstruction and Nonrigid Motion Tracking," Proceedings of International
Conference on Computer Vision 1993, pp.518-523, Berlin, Germany, May, 1993.

[44] Sylvie Menet, Philippe Saint-Marc, and Gerard Medioni, "B-snakes: implemen-
tation and application to stereo," in Proceedings of Image Understanding Work-
shop 1990, pp.720-726, Pittsburgh, September, 1990.

[45] Shigeru Muraki "Volumetric Shape Description of Range Data using 'Blooby
Model'" Computer Graphics, Volume 25, Number 4, July 1991, pp.227-235.

[46] Chahab Nastar and Nicholas Ayache "Fast Segmentation, Tracking, and Analy-
sis of Deformable Objects," technical report, No. 1783, INRIA, France

[47] Alex Pentland, and Stan Sclaroff, "Closed-Form Solutions for Physically Based
Shape Modeling and Recognition" IEEE trans, on Pattern Analysis and Machine
Intelligence, Vol. 13, No.7, July 1991, pp.715-729.

[48] Polak, E. 1971, in Computational Methods in Optimization (New York: Academic
Press).

[49] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetter-
ling, in Numerical Recipes in C, The Art of Scientific Computing (Cambridge),
Chapter 10.

[50] Francis J.M. Schmitt, Brian A. Barsky, and Wen-Hui Du "An Adaptive Subdivi-
sion Method for Surface-Fitting from Sampled Data" ACM SIGGRAPH 86,
pp.179-188.

[51] Sarvajit S. Sinha and Brian G. Schunck "Surface Approximation using Weighted
Splines," Proceedings of Computer Vision and Pattern Recognition 1991, pp.44-
49, Hawaii, 1991.

Final Technical Report 75

[52] Sarvajit S. Sinha and Brian G. Schunck "Discontinuity Preserving Surface Re-
construction," Proceedings of Computer Vision and Pattern Recognition 1991,
pp.229-234, Hawaii, 1991.

[53] Franc Solina and Ruzena Bajcsy "Recovery of Parametric Models from Range
Images: The Case for Superquadrics with Global Deformations," IEEE Trans, on
Pattern Analysis and Machine Intelligence, vol.12, NO.2, February 1990, pp.131-
147.

[54] Stoer, J., and Bulirsch, R. 1980, in Introduction to Numerical Analysis (New
York: Springer-Verlag).

[55] D. Terzopoulos, and D. Metaxas, "Dynamic 3D Models with Local and Global De-
formations: Deformable Superquadratics,"iE'£'2£ Trans, on Pattern Analysis and
Machine Intelligence, Vol. 13, No. 7, July 1991, pp. 703-714.

[56] Demetri Terzopoulos and Manuela Vasilescu "Sampling and Reconstruction
with Adaptive Meshes," Proceedings of Computer Vision and Pattern Recogni-
tion 1991, pp.70-75, Hawaii, 1991.

[57] .D. Terzopoulos, A. Witkin, and M. Kass, "Constraints on deformable models: Re-
covering 3D Shape and Nonrigid Motion," Artifical Intelligence, Vol. 36,1988, pp.
91-123.

[58] M. Vasilescu and Demetri Terzopoulos. "Adaptive Meshes and Shells: Irregular
Triangulation, Discontinuities, and Heretical Subdivision," Proceedings of Com-
puter Vision and Pattern Recognition 1992 pp. 829-832. Urbana-Champaign, IL,
June, 1992.

76 Final Technical Report

5 Recovering Surfaces, 3-D
Intersections, and 3-D Junctions

Using Perceptual Constraints
Gideon Guy and Gerard Medioni

We treat the problem of recovering surfaces from an incomplete set of input mea-
surements, by applying perceptual constraints to the data. This extends our 2D per-
ceptual Grouping work [64] to three dimensions. We show how both the Extension
fields and the Saliency indicators, which were used for the 2-D case, can be elegantly
generalized to 3-D.

We treat sparse "clouds" of non-oriented points, oriented points, and partial sur-
faces, in a uniform and non-iterative way. We are able to handle scenes of any genus,
any number of discontinuities, and of any number of objects, without a priori knowl-
edge or special considerations. The result is in the form of three dense saliency maps
for surfaces, intersections between surfaces, and 3-D junctions. These saliency maps
can then be used to guide a "following" process to generate a CAD model of surfaces,
space curves, and 3-D junctions. We present some preliminary results on computer-
generated images.

5.1 Introduction
Perceptual organization has gained popularity in the Computer Vision research

in the past few years, and its importance has been widely recognized. First proposed
by Lowe [67], and later by numerous researchers (e.g. [59,60,69], and see [63] for a
more complete review), perceptual considerations have been used for a variety of
problems in Computer Vision. All of above attempts took as input two dimensional
image features.

Among the perceptual constraints used, the most common are: Co-Linearity,
Proximity, Simplicity, and Co-Curvilinearity. These constraints are used to handle
gaps and errors in input data, and assist in a higher-level description. The same kind
of task is present in 3-D inputs, where some 3-D data is available, but it is not com-
plete and/or it is noisy. Such input data is normally acquired by range imaging or as
a result of a process that finds depth from X (stereo, shape from shading etc.). Here
the task is to describe the underlying surfaces.

Much work has been done in fitting surfaces to clouds of points. The deformable
models approach (first proposed by Kass et al. [65] for 2D, and in [70] for 3D) attempts
to deform an initial shape so that it fits a set of points through energy minimization.
The deformable shape is subject to certain constraints (such as smoothness, stiffness

Final Technical Report 77

Edge element

\ w 1111 -

w \

■'" / /1
III

III"
III"
11/"
I /"'

(a) (b)

Figure 5.1 (a) The 2-D Extension field (b)the 2-D point field.

etc.) and the point data set behaves as an attractive energy field. Sander [61] have re-
cently proposed a local algorithm to describe surfaces from a set of points. A quadratic
surface is estimated around each data point, and an iterative process refines the local
surfaces, and creates graph-like connections between compatible patches. Others
have used similar methods (for a summary see [66]).

All of the above methods are computationally expensive as an iterative process
takes place. Also in many of the methods, only one genus-zero object can be described
at any one time, and surface boundaries and discontinuities are not always easy to
describe.

We start by briefly discussing our older 2-D work, emphasizing the derivation
and justification of the combination mechanisms. This will serve as an introduction
to the derivation of the 3-D combination mechanisms, which share the same para-
digms.

5.2 From 2D fields to 3D fields

In our 2-D work [64] we describe two basic fields, namely, the Extension field and
the point field. The Extension field is used when edgels are present in the input, and
the point field is used whenever non-oriented features are present. The 2-D version of
the two fields are shown in Figure 5.1 The elements of the 2-D Extension field de-
scribe the most likely orientation of a curve passing everywhere in space. The above
field is used as a mask in a so-called directional convolution, in which the mask is ori-
ented along segments of the input image, votes that consist of strength and orienta-
tion are accumulated at each site of the image, to later determine the saliency of such
site. The result is thus a saliency map, where high values denote high likelihood of a
curve passing there. The actual combination at each site is described next and paves
the way to the 3D case.

78 Final Technical Report

- Principal Axis Image
— -

ö

Figure 5.2 The principal axis of the votes collected at a site is taken as an
approximation of the preferred direction.

5.2.1 Combination per site - The 2-D case

Ideally, we would want an averaged majority vote regarding the preferred orien-
tation at a given position. In practice, we treat the contributions to a site as being vec-
tor weights, and compute moments of the resulting system. Such a physical model
behaves in the desired way, giving both the preferred direction and some measure of
the agreement. We use the direction of the principal axis (EVmin) of that physical
model as the chosen orientation (See equation (5.1)).

m2Q mn

mu m02

EVmin

EVmax

Xmin 0
0 Xmax

[EVminT EVmax^ (5.1)

This acts as an approximation to the desired majority vote, without the need to
consider the individual votes.

The saliency map strength values are taken as the values of the corresponding
kmax at each site. So, large values would indicate that a curve is likely to pass
through this point. This map can be further enhanced (as shown in the next section)
by considering the eccentricity, or l - (Xmin/Xmax) . When that value is multiplied
by the previous saliency map we achieve better selectivity, and only curves are high-
lighted. This results in a map defined by xmax - Xmin .

5.2.1.1 Justification - The 2-D case
Basically, what we are looking for is a function that takes positive vectors as in-

put and results in a measure of the agreement in their orientation. The result should
satisfy several criteria:

• We want the result to be normalizable, so that we can compare different sites
on a standard scale.

• The measure needs to be monotonically increasing with the addition of positive
contributions.

• It should give higher values to ^better' (more directed) spatial arrangements of
vectors.

• We want the effect of proximity to be independent of the affect of agreement.

Final Technical Report 79

It is easy to show how the model behaves when a single vector is added to it. As-
sume the variance-covariance matrix is as follows at state t:

C* =
m2Q mn

mn m02

(5.2)

The sum of the eigenvalues is the trace of the matrix:

*iin + Cx = m20 + mO2 (5-3)

Now adding a new vector V = [äCOSö,Äsinö]T to the system will result in a new
state t+1:

K^ + Cai = m20 + m02 + (Äcosö)2 + (i2sin0)2 = m*0 + m^+R2 (5.4)

Note that the angle 8 has disappeared on the r.h.s. of (5.4). This means that the
sum of eigenvalues is independent of the orientations of the voting vectors and can
hence be used as an indicator of proximity (a wider sense of proximity of course), and
as a primitive saliency measure.

Equation (5.4) can obviously be written as:

N

\nin + *<max= L*? (5-5)
i= 1

Where N is the number of segments in the original image.

We define the eccentricity E = 1 - A.min/x.max as a measure of agreement. Obvious-
ly this value is between 0 and l1. Our intuitive notion of'agreement', or of a majority
vote on a continuous scale, is consistent with the above definition. This means that in
all cases where we feel that collection A has better 'agreement' than collection B, the
corresponding eccentricity values will share the same relationship (i.e. E(A)>E(B)).
This is not to say that both functions are equal, but merely that both are monotonic.

Eccentricity values by themselves cannot perform as saliency measures since
sites with very little voting strength can produce high eccentricity values. In fact, con-
sider a site far away from where the 'action' is, which accepts exactly one vote (This
can happen in practice). The eccentricity value is 1, but the site is of no importance.

1. Since kmin <. \max and are both non-negative for a semi-positive definite matrix.

80 Final Technical Report

However, Consider A^^ itself. Obviously,

^+ max^A <;A . + A (5.6) 2 max min max v '

By (5.6) it is bounded from both sides by the proximity measure in (5.5) and has
the eccentricity coded into it: When the value leans towards the left side of (5.6), ec-
centricity is low and vice-versa.

Thus, Amax is chosen as the raw saliency measure in our scheme.

This choice however, may still amplify locations which are very strong in terms
of number of votes, but weak in eccentricity2. The product of E and A^^ produces the
desired result, termed the enhanced saliency measure SM, or:

SM = Amax • (1 - k^/knJ = Amax - A^ (5.7)

Thus, Amax-Amin is chosen as the enhanced saliency measure.

It is important to note that other functions of the eigenvalues can also satisfy the
same conditions of monotonicity, but the ones chosen seem to be the simplest possible
indicators of the desired behavior.

5.2.1.2 Detection of Junctions
A junction is defined as a salient point which also has a low eccentricity value.

Regular (non-junction) points along a curve are expected to have high eccentric-
ity values. On the other hand, junction points are expected to have low eccentricity,
since votes are accumulated from several different directions. By combining the ec-
centricity and the eigenvalue at a point, we acquire a continuous measure of the like-
lihood ofthat site being a junction. We redefine our previous definition of eccentricity
slightly, so that low eccentricity scores high, or:

The product of our new eccentricity measure and the raw saliency measure A^^
yields the junction saliency operator:

^max = (W^max) " *max = ^min <5'9>

This process creates a Junction Saliency map. Interestingly enough, this map
evaluates to just Xmin at every site (as shown in Equation (5.9)), which simply means
that the largest non-eccentric sites are good candidates for junctions. By finding all lo-
cal maxima of the junction map we localize junctions.

2. For example, accumulation points and junctions! (where >.min
a^max)

Final Technical Report 81

^
most likely
normal to surface
at point p

Figure 5.3 What is the most natural normal to a surface passing through point p
and at the same time tangent to the patch at the origin?

5.2.2 3-D fields

In the 3-D case we would like to treat three elementary features, namely, a
patch, a curve segment, and a point in space. A patch has a known 3-D normal, a
curve segment has all possible normals lying on a plane, and a point in space has ab-
solutely no directional data. We will construct a separate field for each of these fea-
tures.

5.2.2.1 The construction of the Patch Extension Field
We assume that a patch with a known normal is available, and we ask the fol-

lowing question: for a given point in space, what is the most likely normal to a surface
passing through that given point and also tangent to the original patch? Figure 5.3
illustrates that issue. It is clear that the desired normal at point p can be found by
looking at a 2-D scenario, where both the origin and point p are on a plane. This re-
duces the problem to a 2D one, where the 2-D Extension field can be applied. Thus,
constructing the 3-D Extension field is merely revolving the 2D Extension field
around its vertical axis. This is illustrated in Figure 5.4 . Note that unlike the 2-D
field, where each field element pointed in the direction of the most likely curve, in the
3-D case, each vector points in the direction of the normal at that location. This makes
later stages of computation much simpler.

5.2.2.2 The curve segment Extension Field
Here we deal with a primitive with partial information regarding the orientation

of a surface passing through it. All we know is that the given segment has to lie on
the desired surface. Again we ask the question: What is the most likely surface to pass
through a point p in space and have the segment at the origin lying on it? The answer
is very simple. A segment and a point in space define exactly one plane3. And since a

3. Except, of course, the points co-linear with the segment.

82 Final Technical Report

Figure 5.4 The general shape of the 3-D Extension Field. The lower part is omitted
from the sketch, but is similar to the upper part. Field elements are normal to the
surfaces shown, and were also removed for display purposes.

curve segment

Figure 5.5 The general shape of the curve segment field. All planes go to infinity, with
diminishing strength. The field elements are in reality normals to the drawn planes

plane is the best surface in terms of the perceptual constraints, it is also the most like-
ly to appear.

A practical way of constructing this field is to take the Patch Extension field and
convolve it with a multi-directional patch4. This last operation is similar to revolving
the patch Extension field around itself along the x (or y) axis (referring to notation in
Figure 5.4). By symmetry considerations, it is simple to show that the resulting field
will have the correct orientations everywhere in space (as shown in Figure 5.5). This
construction also determines the strength values at every site of the field.

5.2.2.3 The 3-D Point field
The 3-D point field is even simpler to derive. The only thing in common to all sur-

faces passing through a point in space and the origin, is that the line connecting the

4. The 2-D point field was constructed by the exact same way from the 2-D Extension
field (in [63]).

Final Technical Report 83

two points is on all of them. However, in this case, there does not exist a single max-
imum likelihood normal. That is, at each point in space, many normals are equally-
likely. Luckily, they all lye on a plane perpendicular to the line formed by the point in
question and the origin. We thus choose to describe the contribution of all these nor-
mals with a single 3-D vector pointing in the direction of the above line. We will later
show how such a voting vector is treated to determine saliencies.

5.2.3 Directional Convolution

The process of computing the saliency maps is similar to the 2-D case. We will
describe it here again for sake of completeness. Computing the Saliency maps can be
thought of as a directional convolution with one of the above fields (mask). The result-
ing map is then a function of a collection of fields, each oriented along a corresponding
short normal in 3-D. The whole operation is performed in a 3-D grid or array. Each
site accumulates the 'votes' for its own preferred orientation and strength from every
other site in the image. These values are combined at a site as described next.

When the input data consists of non-oriented features (e.g. 3-D points), a 2-pass
convolution was found to work best, first applying the point field in order to estimate
orientations, and then the patch Extension field, for the final results. The same pro-
cedure is performed if curve primitives are present in the input image.

5.2.4 Combination at each Site

Combination per site is really the process of choosing, for each site, the preferred
normal that will show up in the final saliency map. The 3-D case will be derived based
on the same methodology used for the 2-D scheme (as described earlier in this paper).

5.2.4.1 The 3-D case
Here we need to consider a 3x3 variance-covariance matrix, as shown in Equa-

tion (5.10), where A-max, Amid, and Amin signify the three sorted eigenvalues of the
system. (Note that the 3-D discussion assumes that normals to the desired surfaces
are doing the actual voting5!)

m200 miio mioi
mll0 m020 mon
mm\ mon m002

EVmin
EVmid

EVmax

Xmin 0 0

0 Xmid 0
0 0 Xmax

T T T
EVmin EVmid EVmax (5.10)

The three eigenvectors will correspond to the three principal directions of an el-
lipsoid in 3-D, while the eigenvalues describe the strengths and agreement measures
of the 3-D votes.

5. Except for the non-oriented case, which is discussed in a separate section.

84 Final Technical Report

As before Amax is bounded on both sides by the sum of eigenvalues (which cor-
responds to raw strength) and at the same time encodes the eccentricity. When it
leans toward the right hand side of Equation (5.11), eccentricity is high and when it
leans toward the left hand side, eccentricity is low.

Thus, Amax is selected as a raw saliency measure for surface normals,
and the corresponding eigenvector determines the orientation of that nor-
mal.

To further enhance the measure we can require that the other two eigenvalues
be low compared to the Amax. This can be achieved by looking at the difference, Amax
- Amid. The expression will yield high values only when both Amid and Amin are
small. The most likely normal to the surface, is merely the eigenvector corresponding
to Amax.

The same logic holds for intersections between surfaces. Here, we would like to
look at Amid as a saliency measure. When it is high, so must Amax, and the location
is really characterized by votes coming from exactly two separate surfaces.

Thus, Amid is chosen as a raw saliency measure for intersection be-
tween surfaces.

Again, this measure can be enhanced by considering Amid - Amin. This last ex-
pression will exclude locations along intersection curves that belong to a higher-level
intersection(i.e. a junction). The direction of the curve is given by the eigenvector per-
pendicular to the two surfaces, or the one corresponding to Amin.

Lastly, we claim that large values of Amin will correspond to locations where
three (or more) smooth surfaces intersect, or a 3-D junction. It is clear that if Amin is
large, so are the other two. Three large eigenvalues describe a spherical distribution
of normals, meaning normals from many different orientations have voted for that
point in space.

Amin is thus chosen as the junction saliency map.

Final Technical Report 85

The 2-D and the 3-D results can be summarized in Table 6:. The highlighted col-

Table 6: 2-D and 3-D results

Feature
2-D raw
saliency

2-D enhanced
saliency

3-D raw
saliency

3-D enhanced
saliency

Junction A,min Amin Amin Amin

curve Amax Amax - Xmin Amid Amid - Amin

surface Amax Amax - Amid

umns emphasize a somewhat surprising correspondence between the cardinality of
the feature and the eigenvalues.

As usual, a disclaimer is in order. The above heuristic approach is by no means
the only (or the best) indicator of saliency. We believe that it is one of the simplest to
implement, is fairly intuitive, and proves to behave well as an indictor of saliency.

5.2.4.2 Combination per site for the Point field - 3-D case
when only 3-D points are available (no orientation), we first attempt to find a

maximum likelihood normal to those points, with the aid of the Point field. Again we
compute the 3 eigenvalues and eigenvectors, but a different interpretation is now
needed. Recall that we selected a vector lying along the two points to represent all
possible surfaces.

Recovering surface normals requires merely to select the eigenvector corre-
sponding to the smallest eigenvalue. This orientation will be the vector perpendicular
to the best plane described by the ellipsoid of votes.

In order for a certain location to be a good candidate for a surface, the votes have
to distributed in such a way that they create a "flat" sphere. This can obviously be
tested by looking at Amid - Amin. Large values of that term will indicate high likeli-
hood of a surface passing through the location.

The above procedure assigns orientations to the given set of input points. It
could also assign strength to points, thus reducing the influence of noise before the
second pass.

Unfortunately, it is impossible at this stage to recover intersections and junc-
tions from the computed maps. It is necessary to perform a second convolution using
the Patch Extension field, on the input data, which now has orientation data avail-
able. Obviously, the final results when a cloud of non-oriented points is given, are not
as good as with oriented input data.

86 Final Technical Report

(a) (»

Figure 5.6 Input consists of randomly selected set of points lying on the two
intersecting surfaces, (a) A schematic model of input (The lighter line denotes
the intersection between surfaces), (b) Projection of input samples.

5.2.5 Noise tolerance

Similar to the 2-D case, the scheme is not sensitive to noise in the form of erro-
neous features, or localization errors of the measurements, since a voting scheme is
employed. Also, a priori distribution of noise is expected to be directionally uniform,
such that computed orientations are not corrupted. Saliency selectivity6, however,
could suffer when noise is present.

5.3 Results
We have generated some synthetic images to test our scheme. The first example

consists of two planes positioned in space as shown in Figure 5.6 . We randomly sam-
pled the planes of Figure 5.6 . Grid size was 50X50X50, each plane has -100 samples.
Since 3D saliency maps are 4D in nature7, we thresholded (for display purposes) all
maps to a point where the 2D projection becomes legible, and small line segments de-
note the orientation at each site In practice one would like to follow the dense saliency
maps, and extract a description of each surface8. The task of following the surfaces
along the saliency maps was not preformed in this work. Figure 5.7 shows the salien-
cy maps for surfaces and curves. Note that the maps are dense now, and every site
contains a normal. Also, the orientation of the segments in the intersection map
(Figure 5.7 (b)) are pointing in the direction of curve.

6. i.e., the variance between figure and ground in the saliency maps.
7. Strength and orientation at each 3D site.
8. e.g. by a triangulation.

Final Technical Report 87

(b)

Figure 5.7 (a) surface saliency map. (b) Curve saliency map.

88 Final Technical Report

(a)

Figure 5.8 (a) A schematic model of input (The brighter lines denote the
intersections between surfaces, and the dot is the 3D junction), (b) Projection of

(c)

Figure 5.9 (continued)(c) Junction saliency map.

Figure 5.6 describes a scenario with three intersecting planes. Figure 5.9
shows the three corresponding saliency maps. Both the surface map and the intersec-
tion map tend to decay toward the edges of our 3D space. This is due to the limitations

Final Technical Report 89

(b)

Figure 5.9 (a) surface saliency map. (b) Intersection saliency map.

90 Final Technical Report

.MI*11!11'' a, . ' V In» //'//
' \> 1>' ' i. ' ,1/ ,

>."" ~V''"' i,'"„"J',Jy,,,L'

°n!;iijin !v?x

(^; w

Figure 5.10 (a) A schematic model of input (The brighter lines denote the
intersections between surfaces), (b) Projection of input samples.

of our display and the application of a constant threshold to the data. Figure 5.10 de-
picts an example with curved surfaces. Here a sphere is intersected with a plane. As
before, the plane consists of-100 measurements, and the sphere has about 200 mea-
surement points. Results are shown in Figure 5.9 .

5.3.1 Noise tolerance

We choose a simple curved surface to illustrate the noise immunity of the
scheme. A part of a sphere is chosen, and -150 points are randomly selected on the
sphere, as shown in Figure 5.12 . We 'sprinkle' the space with an increasing number
of erroneous segments. The results in Figure 5.7 show the surface saliency maps with
125,250, and 375 additional random segments. It is easy to see that they virtually the
same. The input set with 250 noisy points is shown in Figure 5.12 (b) for reference.

Finally, we show an example where the input consists of a cloud of non-oriented
points, with a considerable amount of noise. Again a quarter of sphere is embedded in
noise. The sphere has -200 data points, and -100 noise points, as shown in
Figure 5.14 (a).

The first phase is to compute normals to the existing input points. This is done
by convolving with the 3D Point field. Figure 5.14 (b) shows the result of the first
phase, note that not only do the points have orientation vectors attached to them, but
many of the noise points have been attenuated. The second phase is the standard
Patch extension field convolution. The final result is shown in Figure 5.14 (c)l.

Final Technical Report 91

(b)

Figure 5.11 (a) surface saliency map. (b) Intersection saliency map.

92 Final Technical Report

si- <<"/•>■ t

(a)

_ \- i

-i mi, i- i

'-"■ ,■'■>- ■'■.

"" .'.J—i *———:-!■ ~_ i

Figure 5.12 (a) Sample points of a quarter sphere centered at the origin.(b) Same
sphere embedded in 250 noisy points.

Final Technical Report 93

(a)

(b)

Figure 5.13 (a) surface saliency map without noise, (b) with 125 noise segments.

94 Final Technical Report

(c)

(d)

Figure 5.13 (continued) (c) with 250 segments, (d) with 375 noise segments.

Final Technical Report 95

(a) Input Image

(b) With estimated normals and strength

Figure 5.14 Results of saliency analysis

96 Final Technical Report

w*4 ^\\S\V - „ „ ,

r^«,fflll ü_ .; i

• .- y .' ;. ; f i E ! \ l $ i s * \ \ ? : -"

il!!H!

to

Figure 5.14 (continued) (c) Final saliency map

5.4 Conclusion
We have presented a method to recover surfaces, intersection between surfaces,

and 3-D junctions by applying perceptual grouping rules. The method presented is an
extension of a 2-D approach proposed earlier by the authors, and uses a non-iterative
and parameter-free algorithm. The method can handle scenes with any number of ob-
jects, each having an arbitrary genus number, without any a priori knowledge. In par-
ticular, an initial guess is not needed.

The complexity is 0(n3k) in general, where n is the side size of the volume, and
k is the number of available measurements. Some practical short-cuts can reduce the
complexity further. The algorithm is highly parallel in nature, and as such can be eas-
ily implemented on a parallel machine.

5.5 References
[59] N. Ahuja and M. Tuceryan, Extraction of early perceptual structure in dot pat-

terns: integrating region, boundary, and component Gestalt, CVGIP 48,1989, pp.
304-356.

Final Technical Report 97

[60] J. Dolan and R. Weiss, Perceptual Grouping of Curved Lines, Proc. IUW89, Palo
Alto, CA., pp. 1135-1145.

[61] P. Fua and P. Sander, Segmenting Unstructured 3D Points into surfaces, ECCV
92, Santa Margherita Ligure, Italy, May 1992, pp. 676- 680.

[62] G. Guy and G. Medioni, Perceptual Grouping using Global Saliency enhancing
operators, Proc. of ICPR92, The Hague, Holland, 1992, pp. 99-104

[63] G. Guy and G. Medioni, Perceptual Grouping using Global Saliency enhancing
operators, IRIS-USC Technical report, to appear

[64] G. Guy and G. Medioni, Inferring Global Perceptual contours from Local Fea-
tures, Proc. of CVPR93, New-York, New-York, 1993, pp. 786-787.

[65] M. Kass, A. Witkin, and D. Terzopoulos, Snakes: Active Contour Models, in In-
ternational Journal of Computer Vision, January 1988, pp.321-331.

[66] C. Liao and G. Medioni, Surface Approximation of a Cloud of 3-D Points, CAD94
workshop, Pittsburgh, PA.

[67] D.G. Lowe, Three-dimensional object recognition from single two-dimensional
images, Artificial Intelligence 31,1987, 355-395.

[68] R. Mohan and R. Nevatia, Segmentation and description based on perceptual or-
ganization, Proc. CVPR, Jun. 1989, San Diego, Ca., pp. 333-341.

[69] R. Mohan and R. Nevatia, Using Perceptual Organization to Extract 3-D Struc-
tures, IEEE Trans, on PAMI, Vol. 11, No. 11, November 1989, pp. 1121-1139.

[70] D. Terzopoulos, A. Witkin, and M. Kass, Constraints on deformable models: Re-
covering 3D Shape and Nonrigid Motion, Artificial Intelligence, Vol. 36,1988, pp.
91-123.

98 Final Technical Report

•

6 From an Intensity Image to 3-D
Segmented Descriptions

Mourad Zerroug and Ramakant Nevatia
We address the inference of 3-D segmented descriptions of complex objects from

a single intensity image. Our approach is based on the analysis of the projective prop-
erties of a small number of generalized cylinder primitives and their relationships in
the image which make up common man-made objects. Past work on this problem has
either assumed perfect contours as input or used 2-dimensional shape primitives
without relating them to 3-D shape. The method we present explicitly uses the 3-di-
mensionality of the desired descriptions and directly addresses the segmentation
problem in the presence of contour breaks, markings shadows and occlusion. This
work has many significant applications including recognition of complex curved ob-
jects from a single real intensity image. We demonstrate our method on real images.

6.1 Introduction
Recovering and representing shape of a complex object is one of the most funda-

mental tasks in computer vision. A good shape representation is useful not only for
recognizing an object but also in determining how to manipulate it, how to navigate
around it and to learn about new objects.

We believe that a good way to represent a complex object is by decomposing it
into parts and describing the parts and the relationships between them. If the parts
are complex, they can be decomposed into simpler parts and described in the same
way as the larger object. Further, we believe that the parts should be described as vol-
umetric primitives. Such a representation is very rich, stable and allows us to handle
occlusion and articulation in a natural way.

Use of simpler parts to describe more complex objects has a long history in com-
puter vision [75,83,92]. Biederman has argued that a similar scheme is used by the
human visual system as well [74]. However, in spite of these theories and the obvious
advantages of segmented (or part/whole) representations, their use in computer vi-
sion systems has been limited. We believe that this is due to the difficulty of actually
computing segmented shape description from real data. The part decomposition hier-
archy is not given in advance, we must infer it from the observable features in the da-
ta. Most of the previous work has used range data. In early work [87], Nevatia and
Binford used perfect contours derived from range data. Pentland [88] used range data
to segment objects into super-quadric primitives. Surface based segmentation using
range data has been studied by several researchers [73,79].

Final Technical Report 99

(a) intensity image (b) edge image

Figure 6.1 Sample real image of a compound object. .

In this paper, we focus on computing segmented volumetric descriptions from a
single intensity image. This is a task that humans perform effortlessly. It is also im-
portant for computer vision as a single image can be acquired rather easily, without
extensive control of illumination or elaborate calibration procedures. Using single in-
tensity images does pose many problems, however. Lack of direct 3-D measurements
makes it more difficult to determine discontinuities that may characterize part
boundaries. Instead, we must work with intensity boundaries which may correspond
to depth boundaries, but also to markings, shadows, specularities and noise. Further-
more, object boundaries are unlikely to be complete due to both poor edge localization
and occlusion. These characteristics make the techniques developed for range data
and perfect contours [72,77] largely unapplicable to the case of intensity images. De-
tection of concavities by computing curvature extrema, for example, as used in [72] is
not possible; it is most likely that such extrema are missing in lines extracted from an
intensity image.

Figure 6.1 shows an example. Notice that the boundaries are not all perfect,
continuous or even part of the outline of the object (most are not in fact). Also, notice
that the pot is partially occluded by both the spout and the flat object in front which
also occludes part of the spout. The pot itself partially occludes the handle whose ends
are not visible. Here, we would like to separate the teapot from the background and
describe it as consisting of the arrangement of four parts: the conical pot, the lid, the
spout and the handle. Deciding that there is such an object and with that composition
is a non-trivial problem. Moreover, we would like to recover the 3-D shape of the ob-
ject.

Some previous work has attempted to address part and object segmentation
from intensity images. Specifically, the work of Rao and Nevatia [90], and Mohan and
Nevatia [84] has attempted to solve similar problems to those presented in this paper.
However, these efforts relied largely on heuristic properties of observed contours and
did not attempt any 3-D recovery (they address a 2-dimensional problem). The meth-
od of [81], based on a neural network implementation, addresses geon-based descrip-

100 Final Technical Report

a curved-axis part (PRCGC) SHGC interpretation dominates
tube interpretation dominates or a straight-axis one (SHGC) .'
(PRCGC)

C^j
y

Figure 6.2 Part perception could be driven by context

tion and recognition from possibly discontinuous boundaries. The boundaries were
synthetic and the axial descriptions were assumed given. In this paper, we present an
approach that is more closely connected to rigorous properties of contours of 3-D ob-
jects to solve the figure/ground and part segmentation problems, and to recover 3-D
structure of the objects.

In this work, we have chosen generalized cylinders as primitives for part de-
scription. The classes of GCs we allow here are the straight homogeneous generalized
cylinders (SHGCs) and planar right generalized cylinders (PRGCs). SHGCs are ob-
tained by scaling a planar cross-section along a straight axis curve. PRGCs are ob-
tained by scaling a planar cross-section along a curved planar axis curve. More
precisely, two sub-classes of PRGCs are addressed: planar right constant generalized
cylinders (PRCGCs), characterized by a constant sweep, and circular PRGCs, charac-
terized by a circular but varying size cross-section. We believe that a combination of
these classes of GCs can represent well a large fraction of man-made objects.

Our approach to detecting and describing complex objects is based on the exploi-
tation of the protective properties of the above classes of parts and of their relation-
ships. They consist of geometric invariant and quasi-invariant and structural
properties of the image boundaries of an object (the projection geometry is approxi-
mated by orthography in this work). We have used a similar approach earlier to ana-
lyze scenes of objects consisting of single GC primitives. Our work on SHGCs is
described in [97,98,99]. Our analysis of circular PRGCs is presented in [96,97]; the
method for recovering them from a single intensity image is submitted separately to
this conference. Dealing with complex objects introduces many new difficulties due to
the interactions between parts such as non-visibility of cross-sections, or substantial
(self) occlusion, and ambiguities inherent to compound objects. For example, a part's
perception depends not only on the properties of its boundaries but on the surround-
ing structure as well (which could be thought of as its context [71]). An example is giv-
en in Figure 6.2 . The middle part (the same set of boundaries) has different
interpretations in the right and left drawings.

Our method for object segmentation and description consists of two main levels,
the part level and the object level. In this approach, the figure-ground discrimination

Final Technical Report 1 ° 1

cross-sections
axis

axis

s (axis)

SHGC meridians

PRCGC Circular PRGC

Figure 6.3 Generalized cylinders used as parts in our approach

and shape description are cooperative rather than sequential processes. The projec-
tive properties we use also help us recover the 3-D shapes of the parts we detect.

In this paper, we apply our method to a restricted (but common) class of com-
pound objects, namely those which consist of two possible types of joints between
parts: end-to-end and end-to-body. In the former, one part's end is in contact with the
other part's end and in the latter, one part's end is in contact with the other part's
body. Our method and some results are described in the following. First, we provide a
brief overview of our part detection and description system and then describe our
method for inferring the joints and the compound object.

6.2 The Part Level

Most of the methods used in this level have been described elsewhere
[96,97,98,99]; due to lack of space, we will summarize them instead of giving details.
The classes of parts addressed in this work (SHGCs and PRGCs) are shown in figure
Figure 6.3 .

Two fundamental aspects characterize our method for detecting parts. First, it
uses geometric projective (orthographic) invariant and quasi-invariant, and structur-
al, properties of the above classes of GCs. Second it organizes the segmentation and
description as a hypothesize-verify process. The projective properties provide neces-
sary conditions that projections of SHGCs and PRGCs must satisfy in the image. They
also give direct relationships between 3-D shapes and computable image descriptions
which is useful for recovering volumetric descriptions from a monocular image. Final-
ly, in using view invariant (and quasi-invariant) properties, the method and the de-
scriptions it produces do not depend on the particular viewpoint the scene is viewed
from.

The method for detecting parts is structured in three sub-levels: the curve level
and symmetry level and the surface patch level (see figure Figure 6.4). The curve lev-
el consists of forming boundaries from image edges. The next level is concerned with

102 Final Technical Report

parts hypotheses

 * k
surface patch level I r

symmetry level I

I
curve level

J
intensity image

Figure 6.4 Black diagram of the part level

forming parallel symmetry [93] relationships between the boundaries (parallel sym-
metries are one of the invariant properties of the primitive parts). The symmetries
are used to initiate the search for parts. The surface patch level is intended to form
part descriptions using the boundaries and symmetries formed in the previous levels.
It consists of a hypothesize-verify process of several steps: detection of local surface
patches, grouping of local surface patches and verification of parts hypotheses. In the
detection step, the projective properties are locally applied between pairs of image
boundaries. Groups of boundaries which (locally) verify the properties are hypothe-
sized to correspond to portions of parts. In the grouping step, local surface patches
which are likely to project from the same scene object are merged to form parts hy-
potheses. The grouping criteria are based on the similarity of their projective descrip-
tions. For example, for an SHGC, the local surface patches must have the same axis
projection. The verification step consists of a filter which rules out inconsistent parts
hypotheses. Consistency is defined in terms of both geometric and structural criteria.
The geometric criteria consist of enforcing global consistency of the geometry of the
part with respect to its geometric projective invariants and quasi-invariants. The
structural criteria consist of enforcing closure and associated junctions at the end of
a part. They express the fact that the image of a part may have one of several well
defined closure patterns involving specific junction labeling (that include occlusion
junctions) [82].

This hypothesize-verify nature of the part detection method allows us to handle
markings, shadows and occlusion. Non-object boundaries (such as surface markings
and shadows) are unlikely to survive the successive application of the strong projec-
tive properties. But some regular markings might still survive the verification tests.

Several enhancements, beyond our previously described work, have been made
to the part level in order to handle compound objects. First, cross-sections may not be
visible due to joints between parts. Second, by using a more complete set of projective
properties (those of joints are described in section 6.3.1), several ambiguities occur
and need to be addressed. The ambiguities are due to the fact that different 3-D

Final Technical Report 103

a. initial local surface patch hypotheses
(146 hypotheses; only a few are shown here
so as not to clutter the image)

b. verified parts hypotheses
(4 hypotheses)

Figure 6.5 Results of the part level from the image of Figure 6.1 .

events could produce similar image events. For example, certain junction relation-
ships between local surface patches could be due to self-occlusion of a single part or
to a joint between different parts. For lack of space, we omit the details of the im-
provements to the part level.

Figure 6.5 shows results of the part level on the image of Figure 6.1 . All four
verified parts consist of aggregrates of local surface patches (the pot for e.g. consists
of two due to the dividing marking across its surface). Notice that the complete pot
has been recovered although its boundary is occluded by both the spout and the flat
object. This is discussed in section 6.6. In this example spurious hypotheses have been
rejected at the verification stage.

6.3 The Object Level

Since finding complex objects consists of finding their parts and the relation-
ships (joints) between them, it is also useful to analyze the generic image events be-
tween parts that allow us to hypothesize those relationships. In this section, we
discuss the properties of the joints we address in this paper and outline the method
used to form compound object descriptions.

6.3.1 Properties of Joints

There is a variety of ways parts can be joined in a compound object. In this paper,
we consider two common types of joints: end-to-end and end-to-body (other types of
joints could easily be incorporated). In the former the parts are joined such that their
ends are in contact and in the latter such that one part's end is in contact with the
other part's body (see Figure 6.6). The properties of these two types of joints consist
of the closure patterns of the joined parts and the observed junction relationships be-
tween the joined parts' boundaries. Analyzing the different possibilities, as relate to

104 Final Technical Report

end-to-end joint

end-to-body joints

end-to-body joint

Figure 6.6 Examples of joints between parts

viewpoint for example, is useful for hypothesizing joint relationships between detect-
ed parts in the image. The properties are discussed below.

6.3.2 End-to-end joints

Our model of an end-to-end joint has two possibilities: the two cross-sections
have the same size (Figure 6.7 .a through c) at their contact or have different sizes
(Figure 6.7 .d and e). The observed closure patterns of the parts and the image rela-
tionships between their boundaries depend on both the parts' shape parameters (for
example sweep derivatives and axis curvature) and the viewing direction (or the ob-
ject's pose). In the latter case, the intersection curve (the joint curve) may or may not
be visible in the image and self-occlusion may be observed. Note that the parts contact
is not necessarily at their cross-sections (the joint curve may not be the cross-section
curve of either part). The different arrangements for both joint closures and events
between parts are shown in Figure 6.7 . The abbreviations for the junctions are as fol-
lows: L-j stands for L-junction, T-j for T-junction and 3-tgt-j for three-tangent junction
(from the catalog given in [82]).

In case a., there is no self-occlusion. In case b. there is self-occlusion and the joint
curve is visible. In case c. there is self-occlusion and the joint curve is not visible. Cas-
es d. and e. have self-occlusion and differ in the visibility of the joint curve. In the fig-
ure, examples with L-j L-j closure could be replaced by any of the image closure
patterns that result from the cross-section facing away from the viewer and the ex-
amples with 3-tgt-j 3-tgt-j closure could be replaced by any of the image closure pat-
terns that result from the cross-section facing toward the viewer.

6.3.3 End-to-body joints

Our model of end-to-body joint consists of a part's end in contact with another
part's body. The closure patterns of the joined part and the image relationships be-
tween the parts depend on whether the joint curve is visible or not. In Figure 6.8 .a,
the joined part has an L-j L-j closure and T-junctions with the other part's boundaries.
In Figure 6.8 .b, the joined part has T-j T-j closure where the T-junctions are with the
other part's boundaries.

Final Technical Report 105

T-j T-j closure . T-j T-j closure

, .. . , L-j L-j closure L-j L-j closure
L-j L-j closure

a. b. c-

L-j L-j closure T-junctions i | T-j T-j closure
I i (stem of T is cross-section I \ (top of T is cross-section

.:!' ,lf of larger size part) J —~. oflarger size part)

3-tgt-j3-tgt-j closure L'J L'J closure

d.

Figure 6.7 Structural relationships for end-to-end joints.
Equal size ends (a through c) and different size ends (d and e).

T-junctions T'J T-J closure
\ (top of Ts are joined I \ (stem of Ts are joined
\f part boundaries) / \ part boundaries)

L-j L-j closure
a. b.

Figure 6.8 Structural relationships for end-to-body joints,
a. visible joint curve.b. non-visible joint curve

The above joint models allow for partial occlusion. Effects of occlusion by other
bodies and of contour breaks are discussed in section 6.4.

6.3.4 Detection of Compound Objects

Detection of compound objects consist of hypothesizing joint relationships be-
tween detected parts. The process is not as direct as simply detecting the joint prop-
erties given previously. An inherent issue to monocular analysis of 3-D scenes is the
ambiguity of the projective properties (an example was given in Figure 6.2). Thus,
multiple interpretations are possible from contours alone. Further, since our goal is
to produce descriptions in terms of GCs and their relationships, we must also produce
descriptions that are as complete as the image allows to infer. These descriptions
could be 3-dimensional if sufficient information is available in the image or otherwise
2-dimensional but corresponding to the projections of the 3-D descriptions. This level
addresses these issues. It is organized in four steps (see Figure 6.9): detection of

106 Final Technical Report

compound objects descriptions

A.
3-D shape recovery

1

1
identification ot

multiple interpretations

detection of joints

1
completion of descriptions I

]

parts hypotheses

Figure 6.9 Block diagram of the object level

R
Pi

a. b.
Figure 6.10 Joint detection allows for partial occlusion, a. a joint is marked
between parts pi and p2 .b. no joint is marked

joints, detection of multiple interpretations, completion of description and 3-D shape
recovery. We discuss these four steps below.

6.4 Detection of Joints
The objective of this step is to identify potential joint relationships between hy-

pothesized parts. Whether there is actual (physical) contact between parts cannot be
concluded from an image. The detection method consists of finding for each primitive
the structural relationships of Figure 6.7 and Figure 6.8 with other primitives. Since
most of those relationships involve T-junctions, these are first detected for all hypoth-
esized parts (some of them are given from the analysis of the part level). The algo-
rithm for checking any of the end-to-end or end-to-body joints between a pair of parts
is fairly simple. Between a pair of parts, it uses an analysis of their contact (the same
closing curve in case a of Figure 6.7 for e.g, or T-junctions between them), of the clo-
sure patterns at the joined regions and of an "extent" analysis. The latter, in case d of
Figure 6.7 for example, consists of verifying that the closing curves of the smaller size
part are all "inside" the region bounded by the cross-section boundaries of the other
part's larger size cross-section. The closure constraints of the joined parts are relaxed
to include occlusion at at most one side of a part's end. For example, the example of
Figure 6.10 .a is accepted as a joint, whereas the one of Figure 6.10 .6 is not.

Final Technical Report 107

end-to-end
joint curve
cannot have
side boundary labeling

Figure 6.11 Visible joint boundaries suggest "part-end" boundary labelling

interpretation 1
one joint of type
end-to-end

parti (cylinder)

part2
(cone)

parti (cylinder)
part2 (half of sphere)

part3 (cone) interpretation2
two joints of type
end-to-end

Figure 6.12 Some ambiguities persist

6.5 Identification of Multiple Interpretations

This step attempts to identify cases where more than one 3-D interpretation is
possible from the given descriptions detected so far. First, the detected joints, provid-
ing global structure (or context), are used to filter out inconsistent interpretations.
The joint relationships can be thought of as non-accidental relationships whose pres-
ence in the image suggests certain labelings of boundaries. The idea is that joints with
visible joint boundaries (intersection curves) are unlikely to have occurred by chance
in the image and they should be interpreted as parts ends. As shown in Figure 6.11 ,
the joint boundaries are unlikely to have side (or limb) boundary labeling (an instance
of this situation was illustrated in Figure 6.2 .b). Therefore, while the single part of
Figure 6.2 , taken by itself could be interpreted as either an SHGC or a PRGC, when
considered in the joint of Figure 6.2 .b, it can only be interpreted as an SHGC part.

Remaining ambiguities are those for which certain image boundaries have dif-
ferent parts and joints interpretations (for e.g boundaries which could be interpreted
as either cross-section or side boundaries). Figure 6.12 gives an example where two
interpretations are possible: a joint of type end-to-end between two parts or two joints
of type end-to-end between three parts. Therefore, conflicting parts hypotheses (two
or three in this case) imply conflicting joints hypotheses (one or two joints for the same
case).

The result at this stage of the method is a set of possible interpretations each of
which is represented a set of graphs (one for each compound object) whose nodes are
the parts and whose arcs are the joints between the parts. The arcs are labeled par-
tially by the type of joints they represent. This graph is only a representation of the
detected objects. Its purpose is not the same as the one in the method of [90] where
the graph was used to segment objects made up of ribbons. Although multiple inter-

108 Final Technical Report

3 ; M-TO-Wt VISIE£-JO!ffl
2 : M-rO-IMT ■Ot-VISIli-JOINT
l : EM-TO-Knrr visii^-Jotxr

Figure 6.13 Resulting graphical representation from the hypothesized parts of
Figure 6.5

pretations are a feature of our system, in the examples given in this paper, only one
interpretation is found for each image. Figure 6.13 shows the graph constructed for
the parts of Figure 6.5 .

6.6 Completion of Descriptions
A complete part description is one which gives its cross-section and the corre-

spondences between its sides (projections of points on the same cross-section in 3-D),
both of which give the projection of the 3-D description. Having these two elements is
essential for constraining the 3-D shape of the part [93,94,95,96,97,98,99]. Some parts
may already have complete projective descriptions (whole body and cross-section vis-
ible). Depending on the arrangements of parts, (self) occlusion and image contrast,
some parts may miss portions of their body or their cross-sections. Two types of com-
pletions for these parts are possible: in the image and after 3-D shape is recovered.

For SHGCs with visible cross-section and partially occluded bodies, the descrip-
tion can be (uniquely) completed using the partial part's (projective) description
[98,99]. For other parts or when the cross-section is not visible, the method attempts
first to infer missing shape information, such as non-(directly)-visible cross-sections
and missing side-boundaries, to the extent possible from the joint relationships be-
tween parts. For this, it is useful to classify the cut of each part as to whether it is
likely to be planar or even cross-sectional. Having this classification also helps select
the appropriate 3-D recovery methods [95]. To do this, we can use the geometric prop-
erties of SHGCs and PRGCs. A summary of these properties (under orthographic pro-
jection) is given below. Their use is in the reverse sense; i.e. given the observed (non-
accidental) properties, we hypothesize that the part has the corresponding type of cut.

Final Technical Report 109

visible
cross-section bilateral symmetric

boundaries

"inherited"
cross-section

elliptic arc
cross-section

==>

inferred
cross-sections

a. b.

Figure 6.14 Completion of descriptions: inferring parts cross-sections

• a cross-section cut of an SHGC at both ends produces linearly parallel symmet-
ric1 boundaries in the image [93]

• a planar cut of an LSHGC at both ends produces line-convergent* symmetric
boundaries in the image [95]

• a cross-sectional cut of a circular PRGC (and circular PRCGC) at any end pro-
duces an ellipse whose minor axis is parallel to the tangent to the projection of
the axis [96]

Two types of cross-section inference are possible. One is through the use of the
end-to-end joints with same-size ends (cases a, b and c of Figure 6.7). For example,
in Figure 6.14 .a, the top part has a visible cross-section which can be "inherited" by
the bottom part. This propagation can be carried through a sequence of joints. In case
this is not possible, the other type of inference consists of inferring circular cross-sec-
tions for primitives which could consistently be described as such. This includes
SHGCs with bilateral symmetric side boundaries [86] and circular PRGCs satisfying
the third property above and having elliptic cross-sectional arcs as the partially visi-
ble cross-section. Figure 6.14 .b gives an example.

For parts which cannot be completed in the image and for which partial 3-D
shape can be recovered, the completion is done in 3-D and consists of filling in the
gaps in the 3-D axis by quadratic curves (in its recovered plane) and the gaps in the
sweep function by piecewise linear sweeps.

The projective completion of the pot of Figure 6.13 (main part) has been done
using only the SHGC description. The completion of the spout (right PRGC) is done
after 3-D shape is recovered (see Figure 6.15). The handle (left PRGC) could not be
completed since its cross-sections and joints are not visible due to occlusion.

Parallel symmetry is a generalization of parallelism of straight lines to curved
ones. It is linear if the curves are scaled and translated version of each other [95].
Line-convergence is a form of symmetry whereby tangent lines at symmetric
points of two curves intersect along a line[95]. It can be thought of as the general-
ization of point incidence to line incidence.

110 Final Technical Report

Figure 6.15 Recovered 3-D volumetric descriptions for the descriptions of
Figure 6.13 .

6.7 3-D Shape Recovery
At this stage of the system, possible interpretations of image boundaries in

terms of compound objects are identified. Recovering 3-D shape of a compound object
consists of recovering the intrinsic 3-D description of each of its parts; i.e. its 3-D
cross-section, its 3-D axis and the sweep function. 3-D descriptions from monocular
images of SHGCs, PRCGCs and circular PRGCs have been addressed by the authors
and others in [76,80,85,89,93,98,97], [94] and [96] respectively. Those method are
based on using the properties of a primitive to generate constraints on its 3-D shape.
For compound objects, a complete 3-D recovery method should normally use, besides
such properties for each part, constraints on the interaction between parts. For exam-
ple, well defined differential geometric relationships hold between the orientations of
two surfaces and their intersection curve [78]. We have not attempted to address this
problem in our work though (this is a topic in its own right).

We have instead used the methods described in [93,98,97,96] to recover 3-D
shape of each part as though it were isolated. Figure 6.15 shows the recovered volu-
metric descriptions of the parts of the object in Figure 6.13 , using different poses in
3-D (the descriptions are shown in terms of cross-sections and meridians of the recov-
ered 3-D GCs). Notice the 3-D completed spout. The handle could not be recovered
since its cross-sections are not (even partially) visible (its description remains protec-
tive)

Figure 6.16 shows results of the method on another image. Both mugs consist
of a main body (SHGC) and a handle (PRGC). Notice the markings on the surface of
the cup in the front and outside the objects. The image also exhibits occlusion between
independent objects. There were 177 initial local surface patch hypotheses (
Figure 6.16 .c) and two objects, each made up of two parts joined by two joints, are ob-

Final Technical Report 111

intensity and edge images

(^>0

l : EM-To-*wf «N-vistai-Ä!

c. local surface patches hypotheses
(total 177)

d. detected compound objects
(2 objects with 2 parts each)

e. recovered 3-D descriptions

Figure 6.16 Additional results of the method

tained. The joints labeling and the obtained graphical representations are shown in
Figure 6.16 .d. The recovered 3-D parts are shown in Figure 6.16 .e for different ori-
entations. The 3-D shape of the handle of the front mug could not be recovered be-
cause its cross-sections are not visible. At this stage, the 3-D parts and their
relationships are completely identified.

6.8 Discussion and Conclusion
There are a number of issues not addressed in this paper. Among them is han-

dling parts with multiple surface patches such as occurs with polyhedral cross-section
parts. This issue has been partially resolved in a previous work in the case of concave
cross-section SHGCs [98,99]. To handle this type of parts requires a further step

112 Final Technical Report

whereby surface patches generated from different portions of the cross-section are
identified and merged.

In summary, the proposed method makes use of the projective properties of a
small number of primitive GCs and their relationships in order to recover segmented
3-D descriptions independently of the viewing direction and in the presence of partial
occlusion, surface markings, shadows and contour breaks.

The results of this work have several applications. The descriptions obtained by
our system (either the 3-D intrinsic elements of a GC or their projective descriptions)
can be used to provide powerful, view-insensitive, indexing keys to large databases of
object models for object recognition (such as in [87] for example). In manipulation, the
3-D descriptions can be used to plan for the grasp and pre-shape the hand. In naviga-
tion, they can be used to select appropriate paths to avoid obstacles, for example, and
in learning, the symbolic descriptions can be used to analyze differences and similar-
ities between newly recovered objects and previously recovered ones.

6.9 References for Chapter
[71] H.G. Barrow and J.M. Tenenbaum, "Interpreting Line Drawings as Three Di-

mensional Surfaces" Artificial Intelligence, 17:75-116,1981.

[72] R. Bergevin and M.D. Levine, "Generic Object Recognition: Building and Match-
ing Coarse Descriptions from Line Drawings," in IEEE Transactions PAMI, 15,
pages 19-36,1993.

[73] P.J. Besl and R.C. Jain, "Segmentation Through Symbolic Surface Descriptions,"
In Proceedings of IEEE CVPR, pages 77-85,1986.

[74] I. Biederman, "Recognition by Components: A Theory of Human Image Under-
standing," Psychological Review, 94(2):115-147.

[75] T.O. Binford, "Visual Perception by Computer," IEEE Conference on Systems and
Controls, December 1971, Miami.

[76] M. Dhome, R. Glachet and J.T. Lapreste, "Recovering the Scaling Function of a
SHGC from a Single Perspective View," In Proceedings of IEEE CVPR, pages 36-
41,1992.

[77] S. Dickinson, "3-D shape Recovery using Distributed Aspect Matching," IEEE
Transactions PAMI, 14(2):174-198,1992.

[78] Do Carmo, "Differential Geometry of Curves and Surfaces," Prentice Hall, 1976.

[79] T. J. Fan, G. Medioni and R. Nevatia, "Recognizing 3-D Objects using Surface De-
scriptions," IEEE Transactions PAMI, 11(11):1140-1157,1989.

[80] A. Gross and T. Boult, "Recovery of Generalized Cylinders from a Single Inten-
sity View," In Proc. Image Understanding Workshop, pages 557-564,1990.

Final Technical Report 113

[81] J.E. Hummel and I. Biederman, "Dynamic Binding in a Neural Network for
Shape Recognition" Psychological Review, 1992.

[82] J. Malik,"Interpreting line drawings of curved objects," International Journal of
Computer Vision, 1(1):73-103,1987.

[83] D. Marr, "Vision," W.H. Freeman and Co. Publishers, 1981

[84] R. Mohan and R. Nevatia, "Perceptual organization for scene segmentation,"
IEEE Transactions PAMI. 1992.

[85] T. Nakamura, M. Asada and Y. Shirai, "A qualitative approach to quantitative
recovery of SHGC's shape and pose from shading and contour," In Proceedings of
IEEE CVPR, pages 116-121, New York, 1993.

[86] V. Nalwa, "Line drawing interpretation: Bilateral symmetry," IEEE Transac-
tions PAMI, 11:1117-1120,1989.

[87] R. Nevatia and T.O. Binford, "Description and recognition of complex curved ob-
jects," Artificial Intelligence, 8(l):77-98,1977.

[88] A. Pentland, "Recognition by Parts," in Proceedings of the ICCV, pages 612-620,
1987.

[89] J. Ponce, D Chelberg and W.B. Mann, "Invariant properties of straight homoge-
neous generalized cylinders and their contours," IEEE Transactions PAMI,
ll(9):951-966,1989.

[90] K. Rao and R. Nevatia, "Description of complex objects from incomplete and im-
perfect data," In Proceedings of the Image Understanding Workshop, pages 399-
414, Palo Alto, California, May 1989.

[91] M. Cecilia Rivara, "Algorithms for Refining Triangular Grids Suitable for Adap-
tive and Multigrid Techniques," International Journal for Numerical Methods in
Engineering, Vol. 20, pp. 745-756,1984.

[92] L. Roberts, "Machine Perception of Three-Dimensional Solids," MIT Press, 1965.

[93] F. Ulupinar and R. Nevatia, "Shape from contours: SHGCs," In Proceedings of
ICCV, pages 582-582, Osaka, Japan, 1990.

[94] F. Ulupinar and R. Nevatia, "Recovering Shape from Contour for Constant Cross
Section Generalized Cylinders," In Proceedings of Computer Vision and Pattern
Recognition, pages 674-676.1991. Maui, Hawaii.

[95] F. Ulupinar and R. Nevatia, "Perception of 3-D surfaces from 2-D contours,"
IEEE Transactions PAMI, pages 3-18,15,1993.

[96] M. Zerroug and R. Nevatia, "Quasi-invariant properties and 3D shape recovery
of non-straight, non-constant generalized cylinders," In Proceedings of IEEE
CVPR, pages 96-103, New York, 1993.

114 Final Technical Report

[97] M. Zerroug and R. Nevatia, "Using invariance and quasi-invariance for the seg-
mentation and recovery of curved objects," in Proceedings of the 2nd ARPAI ES-
PRIT Workshop on Geometric Invariance in Computer Vision, The Azores, 1993.

[98] M. Zerroug and R. Nevatia, "Segmentation and 3-D recovery of SHGCs from a
single intensity image," to appear in European Conference on Computer Vision,
Stockholm, 1994.

[99] M. Zerroug and R. Nevatia, "Volumetric descriptions from a single intensity im-
age," to appear in International Journal of Computer Vision.

Final Technical Report 115

116 Final Technical Report

7 Extraction of Groups for
Recognition

Parag Havaldar, Gerard Medioni and Fridtjof Stein
We address the problem of recognition of generic objects from a single intensity

image. This precludes the use of purely geometric methods which assume that models
are geometrically and precisely designed. Instead, we propose to use descriptions in
terms of features and their qualitative geometric relationships. We propose to detect
groups using perceptual organization criteria such as proximity, symmetry, parallel-
ism, and closure. The detection of these features is performed in an efficient way using
proximity indexing. Since many groups are created, we also perform selection of rel-
evant groups by organizing them into sets of similar perceptual content. Finally we
present an initial implementation of a recognition system using these sets as primi-
tives. It is an efficient colored graph matching algorithm using the adjacency matrix
representation of a graph. Using indexing, we retrieve matching hypotheses, which
are verified against each other with respect to topological constraints. Groups of con-
sistent hypotheses represent detected model instances in a scene. The complete sys-
tem is illustrated on real images. We also discuss further extensions.

7.1 Introduction
Most object recognition systems today address the problem of finding the loca-

tion and orientation of an exactly known rigid object in a scene. Grimson's book [109]
gives a lucid treatment for the geometric constraints used in these approaches. The
presence of a model is inferred by the verification that such a model could indeed pro-
duce some of the observed data under an appropriate geometric transform. However,
this approach cannot be extended to more general scenarios containing objects which
may be very similar while being geometrically different. Consider for instance two dif-
ferent airplanes which have similar features but different geometries. In other words,
generic recognition obviates the use of methods based purely on the exact geometric
structure of the object. It is clear that the only way to solve this difficult problem is to
reason about parts and their arrangements. This argument is supported by Bieder-
man's theory [101], which states the sufficiency of a limited number of volumetric
components (or geons) for the task of recognition. Recovery of parts and their arrange-
ments can help fast recognition of objects even if they are occluded, novel, rotated in
depth or extensively degraded.

We therefore have three problems to solve: the extraction of primitives, the de-
scription of scenes in terms of these primitives and the actual recognition of objects.In
this paper we propose the use of perceptual grouping to approach the problem of ge-
neric recognition. Use of perceptual groups is not new, as it was proposed in the 1970s

Final Technical Report 117

but was not very successful because of the failure to obtain reliable primitives in the
first place. Using groups explicitly for recognition was first launched by the classic
work of L. G. Roberts [118]. Brooks [103]developed an image understanding system
called ACRONYM which uses a restricted class of generalized cylinders (GC) for de-
scriptions of model and scene objects. Lowe's SCERPO[113] system takes a bottom-up
approach to object-centered recognition. Rothwell in [120] explains the need for com-
puting local invariants and for tying them together to form complete object descrip-
tors as opposed to computing a single global descriptor.

In section 7.2 we describe the feature hierarchy computed. As explained in some
of our previous work [124], such groups serve as an intermediate level representation
of the data, in a hierarchical fashion, and can be used to retrieve likely candidate ob-
jects from a library. Some of the groups extracted may not yield any natural descrip-
tions. Hence, in section 7.3, we perform a selection step by organizing the groups into
sets which have similar "perceptual" content making use of junctions to reason about
relevant sets. In section 7.4, we give an outline of our recognition system which uses
these sets for recognition. As models we use multiple views of an object. Results are
shown in section 7.5.

7.2 Going from Edgels to Groups

In our previous work [122], the super segment was introduced in two or three
dimensions as a feature to represent a piece of a curve. It is based on the assumption
that the underlying structure embodies continuity. Here, we propose to go to higher
level groups which take into account other grouping criteria besides co-curvilinearity,
such as parallelism, closure, and symmetry. In computer vision, many authors have
focused on computing perceptual groups (see e.g. [110,113,114,111,119,121,127]).
Most of these algorithms tackle the detection of all perceptual groups by either as-
suming perfect data, or by applying exhaustive search. Our algorithms try to compro-
mise: we do not assume perfect data and therefore we find most (but not necessarily
all) perceptual groups. On the other hand, we do this in an efficient way by using prox-
imity indexing.We now explain the steps involved in going from an image to a high
level representation of it in terms of "perceptual" groups.This chain of processing is
sketched in Figure 7.1 .The following sections focus on the details of the perceptual
hierarchy.

7.2.1 Preprocessing

In the preprocessing stage we reduce the amount of data: starting from images
we first detect edges in the image (using the Canny edge detector [104]). We then com-
pute curves, which consist of linked edgels. In the local grouping stage we generate
many line segments based on multiple linear approximations with different fitting
tolerances. For each approximation tolerance, we perform a vertex collapse and com-
pute super segments and parallels. By creating a large set of features at this point we
gain robustness in our further groups, and we significantly reduce the unreliability of

118 Final Technical Report

Figure 7.1 Feature Hierarchy

the preprocessing. The perceptual grouping stage no longer distinguishes between
features of different fitting tolerances. Below in Figure 7.2 we show an example scene
and the detected edges. Note that although this is the same image as the one used in
Zerroug and Nevatia [128], we follow a very different line of reasoning. In particular,
we make no assumptions about the kind of objects we deal with.

Final Technical Report 119

Figur^TTSam^^Rnage and detected edges

7.2.2 Super Segments

Since we want to handle occlusion, we do not expect to obtain complete bound-
aries in our images, but only portions of them. Grouping a fixed number of adjacent
segments provides us with one of our basic features, the super segment. The compu-
tation of super segments is the same as described in [122]. Connected linear segments
form chains of adjacent segments. We generate super segments from cardinalities 3
to 6.

7.2.3 Parallels

Segments which are parallel within a certain tolerance (5=20°) are grouped as
parallels. For each linear segment, the possible candidate parallels are retrieved and
verified with respect to aspect ratio and overlap. Segment pairs which meet theses
constraints generate parallels. Using proximity indexing, we are guaranteed to find
parallels which are at most 5/2 apart and we get some parallels with angles between
5/2 and 5.

7.2.4 Symmetries

Symmetries have been used by various authors [114,127]. We detect two specific
symmetries here as features of an object.

Parallel symmetries are retrieved by finding proximate parallels. We do not use
the super segment approach, because we would depend on the cardinality of the super
segments. By using the parallels as the building blocks, we can use proximity index-
ing to find parallels which share the same vertices. Examples are shown in Figure 7.3
(left). Skew symmetry was first proposed by Kanade [110] and its extraction was done
by Ponce [111] and Saint-Marc and Medioni [121] but these methods are quite sensi-
tive to noise. We are interested in symmetries between line segments. Our approach
is not exhaustive. We use supersegments to detect skew symmetries. Two super seg-
ments are skew symmetric, if they satisfy the following: (a) the difference between the
corresponding angles must be smaller than 26max, and (b) the symmetry axis has to
be straight. An example is given in Figure 7.3 (middle).

120 Final Technical Report

Figure 7.3 Examples of groups - parallel symmetries (left), skew
symmetries (middle) and U-shapes (right)

7.2.5 Closures

Lowe [113] states: There is a tendency for curves to be completed so that they form
enclosed regions. Based on this statement, Mohan and Nevatia [114] developed the
idea to close symmetries at their ends to obtain so called ribbons, which form enclosed
regions. They use these ribbons to segment images. We want to use closures as fea-
tures. At the moment we compute closures from U-Shapes, from closed curves and
from skewed symmetries. A parallel which is closed at one side by a linear segment is
a strong indication that a rectangular structure is at hand where one side could not
be detected. We therefore assume that we found a closed contour. U-Shapes can be
found by indexing over the vertex pairs of parallels and trying to find a segment which
forms a U-Shape with the parallel.The obvious form of a closure occurs if we have a
closed curve. To detect a closure based on a curve we allow the gap between start and
end of the curve to be 5% of the arc length of the curve. We adopt the idea that a seg-
mentation into parts should be done at negative minima of curvature from Rom and
Medioni [119]. Such "a part" is used in our system as a closure. Whenever we encoun-
ter a sign change of consecutive angles, we "break" the symmetry at this point. Apply-
ing this step iteratively, we generate alternating convex and concave parts. We use
the convex parts to create closures. Examples of closures can be seen in Figure 7.3
(right).

7.2.6 Efficient Implementation through Proximity Indexing

Proximity indexing was used to efficiently compute the feature hierarchy de-
scribed in the previous section. Proximity indexing issues play an important role
when we wish to find features with similar attribute values. Traditional search meth-
ods which compare every possible pair are very time consuming. Recent vision sys-
tems have used indexing. A major problem with indexing is deciding the length of the
quantization intervals. Values which are close, may fall in different quantization in-
tervals as shown in Figure 7.4 . Two features match only in the case when they fall
into the same interval, which may not always be so. Flynn and Jain [108] point out,
it is essential to have an indexing scheme that preserves proximity in the key values.
So far, two strategies based on indexing have been used to deal with this problem:

Final Technical Report 121

similar features in same interval
Quantization interval size ^ similarfea&ires in adjacent intervals

I O« !•••!• •• • [

Figure 7.4 The indexing problem
large bucket size and searching of neighboring bins. While large bucket size is based
on the hope that "less values will fall into the incorrect bin", the search of neighboring
bins has an exponential complexity with respect to the number of false value matches.

We propose an alternative approach: We encode every feature twice and use in-
dexing on every value separately. Every value is quantized twice. The stored features
for both intervals are retrieved and combined into one set. For all values we get such
a feature set. The intersection of all these sets results in the features which are close
to/". Such an interlaced quantization is guaranteed to preserve proximity while index-
ing

7.3 Selection of Relevant Groups
The groups extracted from images not only contain perceptually salient fea-

tures, but also contain many features which do not yield any natural descriptions.
Such groups come about when the segments and supersegments give rise to features
(symmetries, U-shapes etc.) which are geometrically correct, but are less obvious be-
cause of other competing groups. The undesired groups also increase the complexity
of the representation and matching process (see section 7.4). Selecting relevant
groups may be helped by purely local heuristics, such as the skewness or orientation
of overlapping groups. We prefer to make use of more global constraints. We first ag-
gregate the groups into different sets such that each set contains groups which are
perceptually similar. Note that each set may be perceptually correct or incorrect. To
pick out relevant groups we make use of junctions and reason at the level of the above
sets.

The main advantage of this is that if a certain set of features can be verified as
not coming from any surface of an object in the image, then the entire set may be dis-
carded. Reasoning at such a surface patch level provides a stronger grip on the entire
selection process. We now explain the aggregation and selection processes.

7.3.1 Aggregation of Groups into Sets:

We use the properties of the axis to organize the groups into various sets, the ob-
jective being that each set should perceptually provide the same information. Groups
which are "similar" have similar axes orientation and their axes are spatially close to-
gether.

1) We first aggregate the groups having similar axes orientations into different
sets. The groups in each set may still be spatially located at different positions.

122 Final Technical Report

2) Next we choose each set and further partition it depending upon spatial neigh-
borhoods. This is done by constructing a graph whose nodes represent groups
and edges represent spatial closeness. The connected components of the graph
give sets of groups having similar orientation and position

3) Lastly we look at the segments of the groups in each set and further separate
out groups which vary markedly in their average distance to the axis.

In Figure 7.5 we show examples of four such group sets. Each image displays one
group in each set. Below we discuss how to select valid sets.

7.3.2 Selection of sets

We first compute all the junctions in the image and use them to decide the valid-
ity of the sets. The junctions in the image may be because of a variety of reasons,
mainly due to occlusion, surface markings or surface-orientation discontinuities on
the object. We are not trying to classify the junctions, but rather use them as a tool
for verification of the sets. Some computed junctions are shown in Figure 7.5 (b).
Next we break the segments of the groups in each set into two subsets, each subset
containing segments on either side of the axes. If there exist junctions which connect
the above mentioned segment subsets, such that one junction connects the segments
of one side of the set to another set and a second junction connects the segments of the
other side of the same set to a third set then we label this set as invalid. In Figure 7.5
(c) we show some of the valid and invalid groups in the set as a result of this reasoning
for the junctions shown. It can be seen that the groups in set 4 are invalid. Two junc-
tions which the segments of this group set form and meet the above reasoning are
junctions 3 and 4. Another example of an invalid set comes about because of junctions
6 and 7. On the other hand junctions 1 and 2 are formed between segments of group
sets 1 and 2 shown in Figure 7.5 (a). It can be seen that in this case the segments of
the junctions are shared between two sets and not three.

At this stage we have the groups organized into sets, each set contains groups
which as perceptually similar and can now be used as tokens for recognition. Note
that each set yields a multiple representation of a "part" in the form of many groups.
We can encode the spatial relationships of these sets to form a graph to describe the
object. Note that although the percentage of the irrelevant groups has decreased, they
may not necessarily be totally eliminated. However, recognition is achieved by hy-
potheses voting, which tends to minimize the effect of irrelevant groups in the scene.

7.4 Representation and Matching
Given a set of features and the topological relationships between them, a natural

representation of this structure is a graph. For basic graph related definitions used
here and more on graph theory see [116],[100],[105]. For our topological graph the
vertices are the shapes or enclosures of sets of groups and the edges represent the to-
pological relationship between them. We compute the enclosures or convex approxi-

Final Technical Report 123

(a) Examples of groupings organized into sets of similar perceptual
content. Four sets are shown. Each image shows one group of each set.

M f

(b) Examples of some junc- (c) Examples of valid and invalid groups
tions detected in image for T-junctions shown above

Figure 7.5 Selection of Sets

mations (CAs) of the set. This gives us the geometric shape of the set which enables
easy computation of the topological and spatial relationships. In the current imple-
mentation we label the edges with only two labels: adjacency and inclusion. The di-
rection of an edge depends on its label. When an edge is labeled with "inclusion", the
edge is directed from the inner set to the outer set. When an edge is labeled with "ad-
jacency", the edge is undirected. In Figure 6.6 , we show an example of a scene of four
CAs and the corresponding graph.

In computer vision, graph matching is widely used (see e.g. [115], [107], [114],
[117]). In the worst case, the subgraph isomorphism problem is NP-complete. There-
fore several heuristics were developed to improve the average complexity for specific
cases (see e.g. [105]). Despite all the previous research, we could not find any algo-
rithm which would perform with reasonable complexity for graphs consisting of a
hundred vertices or more. Furthermore, we are unaware of theoretical results on sub-
graph isomorphism in colored graphs. Our goal is to find large subgraph isomor-
phisms, which are likely to represent detected models in a scene. We believe that we
can use structural indexing to find corresponding subgraphs

We need to decide upon structural tokens to perform indexing. Using the sets of
groups only would be very expensive. In our implementation the "color" of the graph
lies in relationships between the sets, i.e. the edges in the graph. We make use of the
information of the groups in the sets to separate out consistent hypotheses after the can-

124 Final Technical Report

= adjacent: Symbol a
► inside-of: Symbol i
* inside-of and adjacenk^SyUbjLb.

Table 1:

C C C c
l 2 3 4

c a

^ mbi Lb_

Figure 6.6 Example of Graph

didate hypotheses have been detected. The idea is to find all paths of length k (corre-
sponding to k+1 connected sets) and to cluster these to find the largest consistent
group of such paths. In a complete connected graph consisting of I V\=m vertices,
there are ra-1 outgoing edges at every vertex (\E\ = (IVI -1)!). Therefore the number
of paths of length k is m(m-l)(m-2)...(m-k). This corresponds to an upper bound of
0(IVI *+1) in the number of paths. A more realistic assumption is that there are only
a constant number of outgoing edges at every vertex. This results in an upper bound
of 0(IVI *) in the number of paths. On one hand we are interested in using long paths
to be as discriminative as possible, on the other hand the number of possible paths in
a graph grows exponentially with k. Another consideration for k is the size of the cor-
responding subgraphs. Choosing a large k can result in not detecting a subgraph
which has less vertices than k. In our implementation, we use the path length k=2.
This allows us to exploit the discriminative power of three connected sets. At the same
time the number of paths has the worst case complexity of 0(IVI2) (assuming a con-
stant number of outgoing edges at every vertex). The clustering of corresponding
paths enables us to find the corresponding subgraphs with more than 3 vertices.

The computation of the paths is straightforward. The graph can be represented
by its adjacency matrix.The representation of an object works as illustrated in
Figure 7.6 . Every view of a model is processed in the following way:

1) The feature hierarchy is computed.

2) The enclosures of the sets are used to create the topological graph.

3) All paths (in our implementation of length 2) are computed.

4) Each path is encoded

5) Each path is stored in a data base.

To encode a path we take the code of all pairs of sets. We use the following at-
tributes to encode a pair of sets:

• the label of the connecting edge,
• when the two sets are adjacent, the percentage of common boundary,
• when the two sets are intersecting, the percentage of area intersection.

Final Technical Report 125

view of model database hypotheses

Pk" nPi]

Pl->

database Code(Pk)

Figure 7.6 Representation of Model and Scene

All numerical values are quantized in a coarse way to allow significant devia-
tions due to viewpoint change and noise. The typical quantization in our implemen-
tation for all numerical values is 20%.

The generation of the hypotheses proceeds in a similar way (see Figure 7.6)

1) we perform steps 1 through 4 above, then we

2) retrieve from the data base the stored model paths which have the equivalent
code.

The retrieved hypotheses are equivalent to subgraph isomorphisms of path
length 2 between the different model-views and the scene. In the verification step we
cluster the hypotheses in order to get larger corresponding subgraphs which are likely
to represent an instance of a model in a scene. Two hypotheses are consistent when
the following rules apply:

1) They share at least one corresponding set pair.

2) No contradiction occurs. That means that the combined number of vertices and
edges of the two paths in the model-view have to be the same as in the scene.

3) Connectivity has to be preserved. When two vertices are connected in one sub-
graph they have to be connected with the same label in the corresponding sub-
graph.

In this case, the combined hypotheses form a new hypothesis. These clusters
grow iteratively until no further consistent hypotheses pairs can be found.

7.4.1 Analysis

What would have happened if we would have taken shorter or longer paths as
basic matching primitives? Given k as the path length. Then ck is the number of CA
pairs in a path consisting of k+1 vertices, with c=(k+l)k/2. In section 7.4 we talked

126 Final Technical Report

about the attributes which we use to encode a pair of enclosures of sets: the label of
the connecting edge, the percentage of common boundary, and the percentage of area
intersection. The label can have four different values: nil, adjacent, inside, or adjacent
and inside. We further mentioned that we quantize the last two values in five quan-
tizations of 20% each. That means we have a=4*5*5=100 different codes to encode a
pair of sets. Therefore the number of available path codes of length k isDk=a°k=a(k+1)k/

2

D, is a measure for the discriminative power of an encoding scheme. The larger
D , the larger the code alphabet, the more discriminative power a feature has.The
trade-off lies in the generation of the matching primitives versus the generation of the
hypotheses with respect to the discriminative power. Taking a short path length re-
sults in a low number of paths to generate. For k=l, the number of paths is 0(IVI).
On the other hand the discriminative power of these paths is lower. For k=l,
D =1002=10000. Because the number of paths decreased by one order of magnitude
and the discriminative power decreased by two orders of magnitude, the number of
generated hypotheses h is in general larger than in our example. Because the cluster-
ing of the hypotheses has a complexity of 0(h2), the matching and verification for k=l
is slower than for k=2. Taking a long path length results in a large number of paths.
For example, for k=4, the number of paths is 0(IVI4), and Z>4=10010=1020. The num-
ber of generated hypotheses will be minimal due to such a high discriminative power,
and therefore the final clustering will be very fast. But computing 0(IVI4) paths re-
quires a high space complexity which may be prohibitive. The right way to proceed is
to increase the value a. This can be done by improving the encoding scheme.

7.5 Results
In Figure 7.7 (top) we show an example of the performance of our current sys-

tem. The model used for this was one view of an instance of a duck. In the scene how-
ever, we had a similar view of another instance of the duck, which was partially
occluded. The model gave rise to 21 high level groups resulting in 9 sets out of which
2 were discarded by the reasoning presented in Section 7.3. Among the 7 valid sets
contained 6 relevant and 1 was irrelevant. The entire hierarchy took about 13 seconds
to compute for the model. The scene gave rise to 47 groups which were organized into
21 sets out of which 5 sets could be discarded. The remaining 16 sets contained 12 rel-
evant sets (out of which 5 were of the duck, and 7 were of the other objects). The sets
were used to compute a graph. One of the matched hypothesis is shown. The entire
hierarchy took about 2 minutes to compute.

In Figure 7.7 (bottom) we show another example. In this scene the duck was
slightly rotated and from a different viewpoint. The scene resulted in 88 curves, which
gave rise to 129 groups. These were organized into 19 sets out of which 4 sets could
be discarded. The entire hierarchy took about 6 minutes to compute.

Final Technical Report 127

ing of se

Example 1: (left) images of scene and model - duck in scene is different from that
in model and partially occluded, (middle) edges of scene and model, (right) exam-
ple of matched hypotheses.

irwlno trjM nl 2

Grouping of sot 1

ing of se

ing of set 2

Example 2: (left) images of scene and model - duck in scene is different from duck
in model and partially rotated, (middle) edges of scene and model, (right) example
of matched hypotheses.

Figure 7.7 Recognition examples (1) -top and (2) - bottom

128 Final Technical Report

7.6 Conclusion
We have developed an approach to use perceptual organization for the purpose

of generic object recognition, and show some promising results. Our perceptual group-
ing is purely data driven. We try to resolve ambiguities and try to discard groups
which not necessarily yield any physical interpretation.Our system emphasizes qual-
itative rather than quantitative tokens and tries to achieve recognition using spatial
correspondences of these tokens. By using multiple representations for each group, we
can deal fairly well with occlusion and scale.By using a set of different views to rep-
resent a model we can deal with incomplete model descriptions.

Our future work aims at taking care of cases when the system does not find cor-
responding high level groups (e.g. due to heavy occlusion)? We want to focus on this
point by developing a multilevel matching, which allows the system to "fall back" on
lower level features in order to find correspondences. We would like to extend the in-
dexing idea directly to the perceptual group sets, rather then by using their approxi-
mations. There are several other features and group strategies which we ignore so far:
continuation, texture, saliency etc. Including these features would enrich the descrip-
tive and discriminative power of our feature hierarchy.

Our work and the corresponding results in this paper should demonstrate the
viability of this approach.

7.7 References
[100]Y. Alavi, G. Chartrand. L. Lesniak, D.R. lick, and C.E.Wall. Graph Theory with

Applications to Algorithms and Computer Science. John Wiley and Sons, 1985

[101] I. Biederman. Recognition-by-Components: A Theory of Human Image Under-
standing. Psychological Review 1987, Vol. 94, No 2,115-147.

[102JT . M. Breuel, Adaptive Model Based Indexing, In Proceedings of the DARPA
IUW, pages 805-814,1989.

[103]R. A. Brooks. Model based three dimensional interpretation of two dimensional
images, IEEE Transactions on Pattern Analysis and Machine Intelligence,
5(2):140-150,1983.

[104] J. Canny, A Computational Approach to Edge Detection, IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. 8,1986, pages 679-698.

[105]D. Corneil and C. Gotlieb. An efficient algorithm for graph isomorphism. Journal
of the ACM, 17(l):51-64, January 1970

[106]S. J. Dickinson, A. P. Pentland, and A. Rosenfeld, 3-D shape recovery using dis-
tributed aspect matching. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 1992, pages 174-198.

Final Technical Report 129

[107]T.J.Fan. Describing and Recognizing 3-D Objects Using Surface Properties.
Springer Verlag, New York,1990

[108]P.J.Flynn and A.K.Jain.3Z) Object Recognition using invariant feature indexing.
IEEE Workshop on Directions in CAD-Based Visional 5-123,Hawaii, June 1934

[109]W. E. L. Grimson. Object Recognition by Computer - The Role of Geometric Con-
straints, MIT Press, Cambridge, MA 1990.

[110]T. Kanade. Recovery of the three-dimensional shape of an object from a single
view. Artificial Intelligence, 17:409-4460,1981.

[Ill] D. J. Kriegman and J. Ponce. On Recognizing and Positioning Curve 3-D Objects
from Image Contours. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 1990, pages 1127-1137

[112] Y. Lamdan, J. T. Schwartz and H.J.Wolfson. On Recognition of 3-D Objects from
2-D Images. In Proceedings of IEEE International Conference on Robotics and
Automation, April, 1988

[113]D.G. Lowe. Three-dimensional object recognition from single two-dimensional
images, Artificial Intelligence 31,1987, 355-395.

[114] R. Mohan and R. Nevatia. Using Perceptual Organization to Extract 3-D Struc-
tures, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 11,
No. 11, November 1989, pages 1121-1139.

[115]R.Nevatia and K.Price. Locating structures in aerial images. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 4(5): 476-484, September 1992.

[116] H. Noltmeier. Graphentheorie, de Gruyter, 1976.

[117] B. Parvin and G. Medioni. A Dynamic System for Object Description and Corre-
spondence, Proceedings of IEEE CVPR, Jun. 1991, Maui, Hawaii, pages 393-399.

[118] L. G. Roberts. Machine Perception of Three Dimensional Solids. Optical and
Electro-Optical Information Processing, pages 159-197,1968.

[119] H. Rom and G. Medioni. Hierarchical Decomposition and Axial Shape Descrip-
tion, IEEE Transactions on Pattern Analysis and Machine Intelligence, Oct
1993, pages 973-981

[120]C. Rothwell, Hierarchical Object Descriptions Using Invariants. Applications of
Invariants in Computer Vision II, pages 287-302, October 1993, Azores

[121]P. Saint-Marc and G. Medioni. B-spline contour representation and symmetry de-
tection. In First European Conference on Computer Vision, pages 604-606, An-
tibes, France, April 1990.

130 Final Technical Report

[122]F. Stein and G. Medioni. Structural Indexing: Efficient Three Dimensional Object
Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,
pages 125-145, Feb 1992.

[123]F. Stein and G. Medioni. Structural Indexing: Efficient Two Dimensional Object
Recognition (correspondence). IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, pages 1198-1204, Feb 1992.

[124]F. Stein, G. Medioni, and Parag RayaldarJiecognizing 3D Objects from 2D
Groupings, Proceedings of the Workshop on Computer Vision in Space Applica-
tions, pages 453-464, Antibes, France 1993.

[125] A. Witkin and Tanenbaum. On the role of structure in vision. In J.Beck, B.Hope
and ARosenfeld editors, Human and Machine Vision, pages 481-543. Academic
Press, New York, 1983.

[126]S. Ullman and R. Basri. Recognition by linear combinations of models. IEEE
Transactions on Pattern Analysis and Machine Intelligence, pages 992-1006,
Oct 1991

[127]F. Ulupinar and R. Nevatia, Perception of 3-D surfaces from 2-D contours, In
IEEE Transactions on Pattern Ananlysis and Machince Intelligence, pages 3-18,
Jan 1993.

[128]M. Zerroug and R. Nevatia, Scene Segmentation and Volumetric Descriptions of
SHGCs from a Single Intensity Image. Image Understanding Workshop 1993,
pages 905-916.

Final Technical Report 131

132 Final Technical Report

8 Pose Estimation of Multi-Part
Curved Objects

Mourad Zerroug and Ramakant Nevatia

8.1 Introduction
Recognizing 3-D objects from a 2-D image is important for many visual tasks.

Part of this problem is the estimation of the 3-D pose of the viewed objects. Alignment,
introduced by [134], is a very attractive method since it is simple and efficient. Most
objects demonstrated under the alignment technique are those for which low-level im-
age features can be identified and matched with model features. These include
polyhedra and objects with sharp corners or distinguished lines. Dealing with com-
plex, curved, objects is more difficult because no such low-level features may be iden-
tifiable. This is due to the possible view-dependency of the outlines which may vary
wildly with changes in viewpoint and thus are hard to match with object models.

Few efforts have addressed the pose estimation of curved objects. Kriegman and
Ponce [136] use a complex method based on elimination theory which finds the pose
by minimizing an objective function which is the distance between the viewed silhou-
ettes and the projection of an algebraic surface representation of object models. The
method of [131] addresses surfaces of revolution, a somewhat restriced class. A recent
method of [139] uses invariants based on the cross-ratio along surfaces of revolution
having bi-tangents. The above methods have been demonstrated on relatively simple,
though curved, objects.

In this paper, we show that alignment-like techniques can still be used for a
large class of complex, curved, multi-part objects provided adequate features and rep-
resentations are used. More specifically, we demonstrate that high-level descriptions,
based on a part-based formalism using generalized cylinders, provide means to estab-
lish quasi-invariant correspondences (meaning that they are almost exact over al-
most all viewpoints) between image and model shapes. These correspondences are in
terms of powerful intrinsic quantitative shape attributes such as the axis, the scaling
function and the cross-section of a part. The idea is that although the outlines may be
viewpoint dependent, or may not have distinguished points, the derived shape de-
scriptions in terms of the above powerful attributes (and their combinations) provide
viewpoint independent entities which can be put into correspondence with models so
represented. We believe this to be an important demonstration of the usefulness of
high-level, part-based, descriptions in extending the classes of shapes which can be
handled. The classes of shapes demonstrated here currently include arrangements of
SHGCs {straight homogeneous generalized cylinders), a straight-axis primitive, and

Final Technical Report 133

PRGCs (planar right generalized cylinders), a curved (planar) axis primitive, a fairly
large class of man-made objects (an image of such shapes is shown in Figure 8.1).

Although high-level descriptions have been used in the past in object recogni-
tion, they have been used largely for qualitative image-model matching
[129,132,140]; we believe their use for quantitative pose estimation to be novel in this
work. The method described here is inspired by the results of [146] which demonstrat-
ed that GC part-based descriptions can be obtained even in the presence of adverse
imaging effects such as clutter and occlusion. Our approach is to use these descrip-
tions to recognize the viewed objects and estimate their 3-D pose.

For lack of space, we will not describe the matching techniques in great detail.
Rather, we emphasize the discussion on the use of the high-level part-based descrip-
tions to establish image-model correspondences for relatively complex, curved, struc-
tured objects and demonstrate the application of alignment-like methods on those
descriptions. However, we would like to emphasize that our method does not assume
that model objects with which the viewed objects should be matched are selected by
some previous process. Rather, it automatically finds the matching objects from the
database and computes their pose.

In this paper, we discuss the computation of the scaled orthographic pose (which
is reasonable for each object relatively far from the camera). The results can be used
as initial estimates for the computation of the perspective pose as discussed in [134].

We organize the paper as follows. In section 8.2, we describe the representations
used and the classes of objects addressed in this paper. In section 8.3, we discuss the
use of these descriptions to solve the pose estimation of structured objects, and dem-
onstrate the method on several real images of relatively complex objects. We conclude
in section 8.4.

8.2 Representations
In this section, we describe the descriptions used to represent image and model

objects.

8.2.1 Image Objects

Image objects are extracted using the method of [146]. This latter produces a
graph representation of each viewed object without any prior knowledge of its identi-
ty. Rather, it uses purely generic tools to segment objects from the background and
decompose their shapes into constituent generalized cylinder parts. A detailed de-
scription of the method is given by the authors of [145,146].

An important aspect of the results of that method is that it produces projective
shape descriptions in that, although 2-D, the image characterizations of parts (such
as their image axes and sweeps) correspond to the projection of the 3-D descriptions.
This is very useful and, as we will show in section 8.3, allows the establishment of im-

134 Final Technical Report

age-model correspondences for objects for which aligment-like techniques haven't
been demonstrated yet.

An example of descriptions is shown in Figure 8.1. Each detected object is de-
scribed as a graph where nodes are parts and arcs labeled joint relationships between
parts. For each part, the description consists of the following:

• a label giving its type (SHGC or PRGC)

• a label giving the type of sweep. For an SHGC, this label could be cylinder, cone
or non-linear (the former two indicate a linear sweep while the latter indicates
a non-linear one). For a PRGC, ir could be constant or non-constant.

• the image of the cross-sections if visible. For an SHGC, the "top" cross-section
is assumed visible.

• the image of the axis. In the case of SHGCs, for a cylinder, this consists of the
direction of the axis, for a cone it consists of the apex and for a non-linear SHGC
of a line. For a PRGC, this consists of a list of points which are in practice an
excellent approximation of the projection of the 3-D axis [144].

• the pair-wise correspondences between the side boundaries which correspond
to the projections of co-cross-sectional points in 3-D.

• for SHGCs, the description addtionally includes a list of scaling ratios {Rt; i =
l..n) giving the amount of scaling of the cross-section at each position along the
axis with respect to the top cross-section. The Rt values are invariant under
scaled orthographic projection (quasi-invariant under perspective)..

Figure 8.1 Descriptions (2-D) extracted from an image.

Final Technical Report 135

8.2.2 Model Objects

Each model object O^ is represented as a graph G^ = (QM> JM) where QM = {g^1,
.. QM } is the set of its GC parts and J^ the set of labeled joints between the parts.
Each part is represented by its 3-D intrinsic GC attributes; i.e. the cross-section, the
axis ^d^ the scaling function all in a 3-D object-centered coordinate system Sq =
(Oq, ij, k). Figure 8.2 illustrates this system for SHGCs and PRGCs. More specifical-
ly, the attribute representation consists of the following elements:

• the cross-section XM represented as a list of points; X^ = Ipt)
• the axis Aj^ which

• for an SHGC is represented by the origin Oq (point of intersection of the
straight axis with the cross-section plane) and its orientation NM

• for a PRGC is represented by the equation of its plane nM and quadratic B-
splines givingan analytic expression of the axis points Pa

l and their tan-
gent vectors Ta

• the scaling function R^iz) giving for each arclength value z along the axis A^
the ratio Rj^ of the size of the cross-section at z with respect to the size of a ref-
erence (e.g. "top") cross-section

k (aligned with
extremal axis tangent)

^' k (aligned with axis)

b.

Figure 8.2 Object-centered part coordinate
system for an SHGC (a); for a PRGC (b).

Figure 8.3 shows these representations for one of the object models used in the
current experimentation.

8.3 Pose Estimation

Given extracted image descriptions, a matching stage is first applied in order to
automatically determine which of the model objects 0M corresponds to each image ob-
ject Oj. This process uses qualitative attributes of both image and model objects (such
as part label, sweep type, joint label) in a graph matching method. For lack of space,
we will not describe the matching step in this paper. It results in pairings between
image and model objects and for each of them, the pairings between image and model

136 Final Technical Report

Figure 8.3 Representation of one of the model objects used in the
experiments. Left: side view of the object also showing axes. Right:
scaling functions of the object's parts (SHGC function is shown first).

parts. Each match (Oj, 0M) can be used to estimate the pose of the viewed object. The
method uses the GC-based descriptions to establish correspondences between the im-
age and model parts. We first describe the coordinate systems used and identify the
pose parameters.

8.3.1 Coordinate Systems and Pose Parameters

The world coordinate system Ws= (0, x,y, I) is chosen so that the x- andy-di-
rections coincide with those of the image plane whose coordinate system is Is =
(O, x, y. For each object, a reference partq-ref is chosen. Each part's representational|o
includes the transformation Tt between its own coordinate system Sq = (Oq, ij, k)
and the one of qTei. Currently, we assume that one of the parts is an SHGC which is
chosen to be qTe{ (which of the SHGCs, if many, is not important).

A model object OM is represented in Ws such that the coordinate system of qTef

coincides with Ws. See Figure 8.4.a. Thus, through the transformations Tt and the re-
lationship between the coordinate systems of qre{ with Wg, we can determine the pose
of each part with respect to Ws. To model the viewing geometry, we use scaled ortho-
graphic (weak perspective) projection; i.e. we assume that objects' dimensions are
small compared to their distance to the camera. In this model, the depth of a viewed
object is taken to be the depth of a reference point P0 = (*0> ^0» z6? WS on tnat object.
In this case, the projection of a vector V = P - P0 is equivalent to an orthographic pro-
jection (along the z-direction) followed by a homogeneous scaling k in the image. Note
that scaled orthography is used locally for each object, not the entire scene. As such,
each object will have a different scaling factor k. The pose of a viewed object is deter-
mined by finding the transformation T(P) = R P + t such that the projection of T(0M)
coincides with O/; i.e.

p = SO(T(P)) = SO(RP + t) (8.1)

Final Technical Report 137

where R is a rotation matrix, t a translation vector, P is any point of 0M (all expressed
in Ws), p the projection (belonging to Oj and expressed in Is) of T(P), and SO denotes
scaled orthographic projection.

Because the third component oft is not used, the pose under scaled orthographic
projection is determined by 6 parameters, namely 3 for R the first 2 components oft,
say tx and ty, and k. We model R as the product of three rotations

R - RJ, R„ R, 0 (8.2)

where R^ is a rotation about the 2-axis by an angle cj), RCT a rotation about the *-axis by
an angle a and Re a rotation about the z-axis by an angle 6. The whole sequence of
transformations of equation (8.1) is illustrated in Figure 8.4.a-f.

Using the translated origin of the reference model part qref as the reference point
P0 , the relationship between image and model coordinates is given by

u = k [cos8 (coscj) x - sin4> y) - sinö cosa (sin<j) x + cos(() y) + sinö sina z] + tx (8.3)

v = k [sinö (coscj) x - siiuj) y) + cos6 cosa (sintj) x + coscj) y) - cos9 sina z] + ty (8.4)

where (u, v) denote image coordinates in Ig and (x, y, z) denote model coordinates in
the system of qref (which, at its original pose, coincides with Ws).

Jky
R* i> iy

z k

-r^
•>c

kl c.

iy
SO iy

f. e. d.

Figure 8.4 Sequence of transformations applied to the model object
OM so that its image coincides with Oj.

138 Final Technical Report

8.3.2 Establishing Correspondences for Single-Part Objects

8.3.2.1 SHGCs

8.3.2.1.1 Non-linear SHGCs
In the case of a non-linear SHGC, for each cross-section Xn along the surface of

the image SHGC (SHGC7), the scaling ratio Ru (available with the image description)
it makes with the "top" cross-section is used to find the position zt (which we will al-
ternatively refer to as z-value, a missing element in the image description) on the
model SHGC (SHGCM) it projects from. This is done by starting from the image "top"
cross-section which is matched with the model "top cross-section" whose z-value is
zQ=01. Then, moving along the image axis, the z-value zt corresponding to each image
cross-section XR along the surface of SHGC7is chosen to be the one closest (and supe-
rior) to the previous z-value (zw) such that R^zd = Rn. This is done by "reading" the
model scaling function in a table look-up fashion (see Figure 8.5). This process is not
applied to cross-sections lying on constant regions of the scaling function since the
correspondences would be ambiguous.

Ä«(z) n

Rn

Figure 8.5 Finding correspondences between image cross-sections and
model axis positions using the similarity of the invariant scaling ratios.

This results in a set of correspondences,

{(XK,Zi)i=Q..n}

between image cross-sections and model positions (equivalently, model cross-sections
Xj^Zi)) on the SHGC axis. Many image-model point correspondences can now be es-
tablished. From one of the invariant properties of SHGCs described in [145], the lines
joining parallel symmetric points between any pair of cross-sections intersect at a sin-
gle point (local apex) which belongs to the SHGC axis (Figure 8.6). Thus, the image
local apex (An) between each cross-section XIt (i > 0) and-Xj0 corresponds to the model

1. the image "top" cross-section may also be matched with the model "bottom" cross-
section in case the method fails. This amounts to considering the reverse parameteriza-
tion of the model SHGC.

Final Technical Report 139

local apex (Aj^Zj)) between each model cross-section X^Zj) (i > 0) andX^O). The local
apexes are determined analytically from the descriptions of the SHGCs.

Adzi)

«(/)

image SHGC model SHGC

Figure 8.6 Finding axes points correspondences between image and model
SHGCs

In the case where the SHGC axis passes through the cross-section mean (cen-
tered SHGC) then additional point correspondences can be determined. A correspon-
dence can be established between the mean, M^, of each cross-section XJI and the
mean, M^Zj), of the corresponding cross-section Xyizj). This stems from the fact that,
under scaled orthography, the projection of the mean of a closed planar curve is the
mean of the projection of the curve. This results in the correspondences

{{MIi,MM{zl))i=0..n}

Figure 8.7 shows the correspondences (AIt, A^Zj)) and (MIt, M^z;)) for the
SHGC of the mug in the back of Figure 8.1 (whose origin coincides with the cross-sec-
tion mean).

Figure 8.7 Image-model SHGC axis correspondences

140 Final Technical Report

8.3.2.1.2 Linear SHGCs
For a conical LSHGC, the local apexes are all a single point (the cone apex).

Thus, the set of correspondences between image and model local apexes is a singleton
{(AI0, A^(0))}. However, the set of correspondences between image and model cross-
section means (Mn, MM{z,)) includes all visible image cross-sections.

For a cylindrical LSHGC, the local apexes are all at infinity and thus cannot be
used. The set of correspondences between image and model cross-section means has
two elements, mapping the image and model means of the top and bottom cross-sec-
tions of the cylinder. We thus assume that a cylinder does not have a full portion of its
surface occluded (it can still be partially occluded such that the full description can be
inferred [145]).

8.3.2.2 PRGCs
The image description of an isolated PRGC is not as rich as the one of an isolated

SHGC. The main reason is that, unlike with an SHGC, the scaling ratios cannot be
determined in the image. In case enough "special" axis points, such as inflections or
cross-section corners, exist (and can be identified) then correspondences can be estab-
lished between image and model PRGCs. But this is not guaranteed. In general,
though, it is observed that PRGCs are attached to other parts (serving for example,
as handles, etc.). Thus, we choose to discuss PRGCs as part of composite objects.

8.3.3 Establishing Correspondences for Multi-Parts Objects

In some (but practically rare) situations, such as non-centered SHGCs, the sets
of points M,i and An may not be colinear and thus they are sufficient to find the pose
of a part (and the whole object if assumed rigid). However, in most cases, a multi-part
object typically provides more information about the pose of all its parts, than each
one of them does individually. For example, for the mug of Figure 8.1 (back), the pres-
ence of the handle conveys the pose of the symmetric cup, whose rotation about its
axis is ambiguous when considered alone (the points used for the cup correspondences
are all colinear; Figure 8.7).

In this case, we need at least one additional point correspondence which is not
colinear with the SHGC axes. Below, we discuss the use of a PRGC attached to an
SHGC. The case of two attached (non-colinear) SHGCs is similar. In case, more than
two parts exist, any choice of non-colinear axes is equally valid.

Let us denote PRGC/ and PRGCM the matched image and model PRGCs respec-
tively. In case the axes of PRGC/ and PRGCM have inflections, then they can simply
be used as "distinguished" points to put into correspondence. In case the axes do not
have inflections, then we assume that the object's SHGC axis is contained in the
PRGC axis plane, as is the case for many objects (due to physical stability reasons).

In the latter case, the tangent line at each point Pj (pß of the axis of PRGCM

(PRGC/) is either parallel to the axis of SHGCM (SHGC/) or intersects its supporting

Final Technical Report 141

line at some point BMj (By). Thus, given an image point By (possibly at infinity), if we
can determine the corresponding point B^j then we have a correspondence between
Pj and Pj (see Figure 8.8). But, using the previously matched points on the SHGC ax-
es, we can construct corresponding basis vectors Vj and V^ on the axes of SHGC/ and
SHGC^f, respectively, with respect to which we can identify corresponding points by
the same 1-D coordinate (a) along any of these vectors. Thus, given a point By and its
coordinate a.j (i.e. By = cc, Vj), BMj is given by

BMj=ajVM. (8.5)

'M

axis of
ajas of „ axi« of
SHGr PRGC, -sof

1 PRGCM S3HOCM

Figure 8.8 Using the SHGC axes correspondences to find PRGC axes
correspondences.

In case OLJ -> °° (i.e. the tangent at pj is parallel to SHGC/s axis), then the corre-
sponding point Pj should also have its tangent parallel to SHGC^'s axis. Thus,
through the coordinates of points on the SHGC axes, we can now establish an arbi-
trary number of point correspondences between the axes of PRGCj and PRGC^
(points whose tangents pass through By and BMj).

Figure 8.9 shows a correspondence, for the back object in Figure 8.1, between
the axes points of PRGC/ and PRGCM whose tangent lines are parallel to the SHGC
axes.

8.3.4 Solving for the Pose Parameters

The image-model point correspondences obtained as described above are not all
colinear. A choice of three non-colinear points should be sufficient to determine the 6
pose parameters as discussed by [134]. Here, we briefly review the method.

The angle 9 can be determined directly from the image and is given by the ori-
entation of the image SHGC axis. Also, using only the image-model SHGC axes cor-
respondences (UJ, vß*, (0, 0, zjfij = 1, ..m, we can determine tx, ty using a least squares
formulation which results in:

142 Final Technical Report

Figure 8.9 An example of image-model PRGC axes correspondence (the
corresponding points have tangents parallel to the SHGC axes).

r|sin0Vz. + V«.

'* = m
\ty = ■1 I

m
(8.6)

where

mYzj (sinQuj - COBQVJ) + YzlcosdYvj - sinej"^.

mL*j-[Z'j
J v J

(8.7)

Let pB = (ua, vaf and Pa = (xB, 0, zaf be any pair of matched points not colinear
with the above points (for example, the matched points on the image and model PRGC
axes, respectively; without loss of generality, the coordinate system of PRGCM is ro-
tated such that its axis plane contains SHGCjj/s i-axis).

Combining equations (8.3) (8.4), and (8.7), it can be shown that we obtain the
quadratic form on X (see [134] for the details of the mathematical formulation):

n\^2-[n\2 + wt^za + wi]2]x+wf = 0 (8.8)

where ua-tx=W£va- ty= W«, and X = cos24>.

For each solution $ = ± cos"1 (±+/X) (if a solution 0 <. X <. 1 exists), a and k can be
determined by

a = tan"1
f
 T\X SUKtP

+ 5 n; k - (8.9)

Wa + O
where 5 = 0 or 1 depending on which results in a positive value of k.

Final Technical Report 143

Although the formulation of [134] leaves two possible solutions when three
points are used, in our case we can uniquely determine the solution from the rich de-
scriptions used. The solution is selected based on the image labeling of a part's cross-
section as facing "towards" (o > -) or "away" (a < -) from the camera (this informa-
tion is given from the types of junctions which terminate a part). This is another im-
portant use of the high-level descriptions in finding the 3-D pose.

The application of this method to the objects of Figure 8.1 is shown in
Figure 8.10 showing the transformed and projected model objects (with cross-sections
and meridians) on the image. Additional results are shown in Figure 8.11.

a. b.

Figure 8.10 Overlay of the model objects with their estimated poses on the
intensity image of Figure 8.1. (a); a top view of the objects (b).

8.4 Conclusion
The pose estimation method exploits the rich GC descriptions in order to estab-

lish (viewpoint invariant and quasi-invariant) point correspondences between axes,
cross-sections and scaling functions of image and model parts. For the class of shapes
addressed here, this results in a closed-form solution and avoids complex methods
used in past work on curved objects.

In the near future, we plan to extend the method in several ways. Although the
class of objects demonstrated in this paper is more complex than demonstrated in ear-
lier work on curved objects, we plan to extend the method to more general classes, in-
cluding non-exact primitives. Additionally, we plan to develop an indexing strategy in
order to handle large databases. The indexing scheme should also be based on the
part-based descriptions of the extracted objects.

Finally, we plan to integrate the current method into a larger framework of "rec-
ognition by hierarchical classes". In this framework, the similarity of the image ob-
jects is evaluated with respect to known generic classes starting from generic class

144 Final Technical Report

Figure 8.11 Another image of a previous object (back object of Figure 8.1)
and its estimated pose.

descriptions and ending at specific object instances. Recognition and pose estimation
would then proceed from qualitative criteria, using class descriptions, to quantitative
ones, using object instances as shown in this paper. This is important for tasks such
as learning and database organization. We expect the representations we use to allow
us to make rapid progress on these issues.

References

[129]R. Bergevin and M.D. Levine. Generic Object Recognition: Building Matching
and Coarse Descriptions from Line Drawings. IEEE Transactions PAMI, 15,
pages 19-36,1993.

[130]R. A. Brooks. Model-Based Three Dimensional Interpretation of Two Dimension-
al Images. IEEE Transactions on Pattern Analysis and Machine Intelligence,
5(2):140-150,1983.

[131]M. Dhome, JT. Lapreste, G. Rives and M. Richetin, "Spatial localization of mod-
elled objects revolution in monocular perspective vision," In Proceedings of EC-
CV, pages 475-485,1990.

[132]S. Dickinson, 3-D shape Recovery using Distributed Aspect Matching, IEEE
Transactions PAMI, 14(2):174-198,1992.

[133]Geometric Invariance in Computer Vision, J.L. Mundy and A. Zisserman editors,
MIT Press, 1992.

Final Technical Report 145

[134]D. P. Huttenlocher and S. Ullman, Recognizing Solid Objecs by Alignment with
an Image, IJCV 5,195-212,1991.

[135]W.E.L. Grimson, Object Recognition by Computer-The Role of Geometric Con-
straints, MIT Press, Cambridge MA 1990.

[136]D.J. Kriegman and J. Ponce, "On recognizing and positioning curved 3-D objects
from image contours," in IEEE Transactions of PAMI, pages 1127-1137, (12)
1990.

[137]J. Liu, J. Mundy, D. Forsyth, A. Zisserman and C. Rothwell, Efficient Recogni-
tion of Rotationally Symmetric Surfaces and Straight Homogeneous General-
ized Cylinders, In Proceedings of IEEE Computer Vision and Pattern
Recognition, pages 123-128,1993.

[138]D. G. Lowe, "The viewpoint consistency constraint, " IJCV, pages 57-72,1987.

[139] J.L. Mundy, C. Huang, J. Liu, W. Hoffman, D.A. Forsyth, CA. Rothwell, A. Zis-
serman, S. Utcke, and O. Bournez, MORSE: A 3-D object recognition system
based on geometric invariants, IUW, 1393-1402.1994/

[140]R. Nevatia and TO. Binford, Description and Recognition of Complex Curved
Objects, Artificial Intelligence, 8(l):77-98,1977.

[141] A. Pentland. Recognition by Parts, in Proceedings of the ICCV, pages 612-620,
1987.

[142]L. Roberts. Machine Perception of Three-Dimensional Solids. MIT Press, 1965.

[143]F. Ulupinar and R. Nevatia, Perception of 3-D Surfaces from 2-D Contours,
IEEE Transactions PAMI, pages 3-18,15,1993.

[144]M. Zerroug and R. Nevatia, "Quasi-invariant Properties and 3-D Shape Recov-
ery of Non-Straight, Non-Constant Generalized Cylinders", In Proceedings of
CVPR, pages 96-103.1993. New York.

[145]M. Zerroug and R. Nevatia, "Segmentation and 3-D Recovery of SHGCs from a
Single Intensity Image, in Proceedings of the ECCV, pages 319-330, Stockholm,
1994.

[146]M. Zerroug and R. Nevatia, "From an Intensity Image to 3-D Segmented De-
scriptions" In Proceedings of the ICPR, 1994.

146 Final Technical Report

9 Representation and Computation
of the Spatial Environment for

Indoor Navigation
Dongsung Kim and Ramakant Nevatia

We introduce a spatial representation, s-map, for an indoor navigation robot.
The s-map represents the locations of obstacles in a planar domain, where obstacles
are defined as any objects that can block movement of the robot. In building the s-
map, the viewing triangle constraint and the stability constraint are introduced for
efficient verification of vertical surfaces. These verified vertical surfaces and 3-D seg-
ments of obstacles smaller than a robot, are mapped to the s-map by simply dropping
height information. Thus, the s-map is made directly from 3-D segments with simple
verification, and represents obstacles in a planar domain so that it becomes a naviga-
ble map for the robot without further processing. In addition to efficient map building,
the s-map represents the environment more realistically and completely. Further-
more, the s-map converts many navigation problems in 3-D, such as map fusion and
path planning, into 2-D ones. We present the analysis of the s-map in terms of com-
plexity and reliability, and discuss its pros and cons. Moreover, we show the results of
the s-maps for indoor environments.

9.1 Introduction
Most navigation robots use vision systems to acquire information about the en-

vironment in which they navigate. To acquire information, a robot should be able to
represent the environment in some way. This depends on various conditions: the
tasks to perform, the amount of an a priori knowledge of the environment, and the
sensors used. A complete and accurate representation is needed as a robot performs
sophisticated tasks. For instance, an occupancy map is enough to avoid obstacles,
while explicit representation of materials is necessary for landmark recognition.

The amount of a priori knowledge for the environment determines the complete-
ness of representation of the environment. A fairly complete representation is neces-
sary as a robot has small a priori knowledge for the environment. For a robot
navigating in a known environment, the environmental representation can be simple
low level features, such as edges in 2-D images, because the necessary condition for
the robot to reach a goal is to locate itself in the environment. However, when a robot
is navigating without a precise map, the environmental representation needs to be
more complex. In our case, the robot has general information about the environment,
such as flat floors and vertical walls. However, it does not have the specifics of the par-
ticular environment; the locations of walls or doors and their widths. We will use the

Final Technical Report 147

term "Generic map" to refer such knowledge. For a robot with only a generic map, the
representation should allow the robot to convert a generic map to a specific navigable
map.

Furthermore, the sensors used influence the representation of the environment.
The main sensors used presently can be divided into two categories: active range sen-
sors and passive range sensors. Using active sensors, an elevation map can be easily
acquired because the sensors get dense occupancy information. However, they are ex-
pensive and the occupancy information is not enough for robot navigation with only a
generic map because object recognition is an important task for such a robot to reach
a goal that is described symbolically, for example "turn at the end of a corridor." In the
second category, passive stereo can acquire 3-D information of the environment. With
the passive stereo, we get only a very sparse depth map. Making a complete map from
the sparse depth map is one of the most challenging problems in computer vision.

Little research has been done on the environmental representation for indoor ro-
bot navigation with a generic map using passive sensors. The current methods for
such environmental representation fall into two categories: those methods without
surface reconstruction and those methods with surface reconstruction. In the first cat-
egory, Moravec represented an environment simply with detected features [159], and
Braunegg proposed a grid-based presentation using only vertical features [150]. Fur-
ther, [156,160] tried to represent an environment with a single horizontal slice of a
whole 3-D environment. These methods, which do not have surface reconstruction,
make incomplete maps. This is because they may miss many surfaces if the surfaces
do not have sufficient features or vertical lines. In addition, the method using a single
horizontal slice suffers when all horizontal slices of the 3-D space are not the same.
For the second category, Bras-Mehlman et al. attempted to make a surface with 3-D
Delaunay triangulation and a visibility condition [149,157]. Bruzzone et al. first
made 2-D Delaunay triangulation then back-projected into 3-D space [151]. Because
these methods try to make a surface from adjacent segments, the reconstructed sur-
faces may be unreasonable, and the constructed free space is shrunk unless there are
sufficient segments. Conceptual grouping has also been used to reconstruct surfaces.
Mohan and Nevatia attempted to make surfaces by finding rectangles [158]. Chung
and Nevatia made surfaces from junctions[154]. Although the reconstructed surfaces
are more reasonable, these methods need a lot of computation.

We propose a spatial representation, s-map, for indoor robot navigation using a
stereo system when a generic map is provided. The environments in which we have
experimented are laboratories and corridors in our building, and mostly consist of
vertical and horizontal surfaces. A laboratory used in the experiments is shown in
Figure 9.1 . Obstacles in the environments have regular shapes that can be linearly
approximated. The obstacles used in the experiment are traffic cones, trash cans, box-
es, cabinets, desks, etc..

148 Final Technical Report

(a)Image 1 (b) Image 2
Figure 9.1 Laboratory 1 scene.

(c) Image 3

We use a Denning mobile robot, Antigone, for our experiments. This robot has
ultra sonic sensors that are not used in these experiments, and vision sensors com-
posed of three Sony cameras with Cosmicar lenses of focal length 8mm. The three
camera are used to take images. The images are then digitized by a Sun Videopix on
a Sun workstation. Then, the edges of the images are detected by a Canny edge detec-
tor [152].

We use a junction-supported trinocular stereo system for matching the seg-
ments. Our method similar to one developed at INRIA [147,148] but incorporates im-
portant junction information [155]. Supporting junctions have been introduced for
robust matching, and are defined as the junctions of a segment in one image, which
are also maintained in homologous segments in the other images. The supporting
junction for a segment is formed by the segment and one representative branch of the
segment. The representative branch is selected among many branches to reduce com-
plexity. This junction-supported trinocular matching reduces the ambiguity caused by
edge detection error, calibration error, and lens distortion [155]. This stereo system
gives segment matches as shown in Figure 9.13 that is the results of stereo matching
for Figure 9.9 . Now the matched segments are used to reconstruct 3-D segments for
making the s-map.

Making a complete map from a sparse depth map, such as Figure 9.1 , is one of
the most difficult problems because of insufficient 3-D information to resolve ambigu-
ities in surface reconstruction. As we see in Figure 9.13 , the nearest segments in ei-
ther 2-D or 3-D do not form a coplanar surface so that Delaunay triangulation
methods make unrealistic surfaces. Moreover, deficient 3-D segments make surfaces
shrunk. This problem is severer in conceptual grouping methods. The walls in
Figure 9.1 do not have enough segments, so that they can hardly recovered. In addi-
tion, the perceptual grouping is not so fast that can be used in robot navigation.

From reconstructed 3-D segments and an image, the s-map represents the loca-
tions of obstacles in a planar domain by simple mapping and verification. At first, an

Final Technical Report 149

216/

r-2'!

\;

- -**r*

r
. L

7

„r*-
V.1

IF*

ML^-^H1 e^-s,

L

_-l2__ ' A6 SB—""

(a)Image 1 (b)Image 2 (c)Image 3

Figure 9.2 Matched segments for Laboratory 1

image is segmented into vertical slices according to the vertical segments. Then seg-
ments are distributed among the vertical slices. Now each vertical slice is verified if
it can make a vertical surface. The verification is simply done using the viewing tri-
angle constraint and the stability constraint, described in Section 9.2. While the va-
lidity of a vertical surface is decided, the segments in its slice are squeezed into an s-
map if they can block robot movement..

These simple verification and mapping algorithms allow the robot to build the s-
map efficiently. In addition, the s-map can represent the environment more realisti-
cally and completely with relatively few 3-D segments because it makes the utmost
use of characteristics of indoor environments. Furthermore, the s-map converts many
navigation problems in 3-D to 2-D ones because it can represent objects in 2-D do-
main. This s-map is used for the robot to find a path and navigate the environments.

In Section 9.2 , we introduce an s-map as a spatial Representation For an indoor
robot. In Section 9.3, we analyze the algorithm of the s-map. In Section 9.4 , we
present the s-map results for indoor environments. Section 9.5 contains the conclu-
sion of this paper.

9.2 S-map

Robot Navigation is defined by the set of tasks that a mobile robot has to perform
in order to reach a goal. The tasks involve sensing the environment, analyzing and
representing the environment, path planning, and robot locomotion. In this paper, we
focus on the environmental representation for the indoor robot using a passive stereo
system when only a generic map is given. The passive stereo system provides only 3-
D segments for the robot to make a navigable map.

The navigable map should represent where obstacles are located, and may rep-
resent the shape of the obstacles, when necessary. However, most indoor robots need
just the locations of obstacles because they can move only in a plane. Thus, we propose
a spatial representation, s-map, which can represent the locations of obstacles in a

150 Final Technical Report

planar domain. The term, s-map, comes from the idea that the map is made by squeez-
ing 3-D segments into a 2-D map. In this section, we will first give the definition of
the s-map, and exploit characteristics of an indoor environment. Then we will intro-
duce the viewing triangle constraint and the stability constraint, which incorporate
the characteristics of an indoor environment to verify vertical surfaces efficiently. We
will finally explain how to build the s-map.

9.2.1 Definition of the s-map

The s-map is defined as a map that represents the locations of the visible 3-D
surfaces of obstacles in a 2-D space, where 2-D consists of width and length coordi-
nates but does not include a height coordinate. Obstacles are defined as objects that
can block the movement of the robot. Therefore, the objects beneath the ceiling are
not considered obstacles because they do not block robot movement. Conceptually the
s-map is made by first reconstructing a 3-D map and cutting the 3-D map from floor
level to robot height level, and finally squeezing the cut 3-D map. However, we do not
build the 3-D map, but rather make the s-map directly from 3-D segments.

9.2.2 Characteristics of an indoor environment

The characteristics of an indoor environment are different from those of an out-
door one. Therefore, the characteristics should influence the methodology in order to
make the utmost use of them. Now we present the characteristics of indoor environ-
ments, and make reasonable assumptions on a navigation environment on which to
base the algorithm.

Rooms are mainly composed of vertical walls and horizontal floors, and are filled
mostly with man-made objects. Among those man made objects, most objects taller
than humans, such as bookshelves, are composed of vertical surfaces. On the other
hand, top surfaces of the objects smaller than humans, such as a tea table, can be seen
if they are not occluded. From these characteristics, we make three reasonable as-
sumptions for the indoor environment: the floor is flat, and the objects that are taller
than a robot, including walls, have vertical surfaces. Moreover, top surfaces of the
smaller objects than the robot can be detected at least partially when they are visible.

In order to use these characteristics, we divide objects into two categories: those
that are smaller than the robot and those that are taller. Locations of the smaller ob-
jects can be represented by simply dropping height information of the 3-D segments
of the objects because the robot can see all the boundaries of visible surfaces. There-
fore, the locations of the smaller objects are acquired by squeezing the 3-D line seg-
ments of the smaller objects to the floor. For the taller objects, the robot may not see
all the boundaries of visible surfaces. Horizontal boundary lines generated by an ob-
ject and either the floor or the ceiling may not be seen due to occlusion by other objects
or the small viewing angle of a lens. However, the vertical boundary lines are likely
to be seen in most cases because they are tall enough not to be occluded when they
are within viewing angles. These vertical lines are important clues to find the loca-

Final Technical Report 151

View Point

3D segment

Figure 9.3 Viewing Triangle

tions of the taller objects including walls. If we follow the same process as we do for
the smaller objects, we get only points because the vertical lines are points in the 2-D
space, which consists of width and length but not of height. Therefore, we need some
kind of surface reconstruction with the vertical lines.

The surface reconstruction with vertical lines uses the characteristic of a verti-
cal surface, that is, the vertical surface has two adjacent vertical lines bounding it.
However, all adjacent vertical lines are not in the same surface. Two adjacent vertical
lines fall into two categories: both of them are on the same surface or they are on dif-
ferent surfaces. Those two adjacent vertical lines that are on the same surface can
make a surface. However, those two adjacent vertical lines that are on the different
surfaces cannot make a surface. Therefore, vertical surfaces are reconstructed only
from the two adjacent vertical lines on the same surface. Then the reconstructed ver-
tical surfaces are squeezed to a floor. Now the problem of surface reconstruction with
the vertical lines becomes how to verify if two adjacent lines are on the same surface.
The verification process is described in section 9.2.3 .

9.2.3 Viewing triangle constraint

We assume that objects are opaque. Seeing an object means that the visible part
of the object is not occluded by any other obstacles. Similarly, a 3-D segment corre-
sponding to the edge detected in an image, is not occluded by any other objects. From
the above observation, we introduce the viewing triangle constraint described below.
Before explaining the viewing triangle constraint, we define the viewing triangle as
follows.

Definition: Viewing triangle The triangle made with a view point and the 3-
D segment corresponding to the edge detected in an image

Figure 9.3 shows a viewing triangle..

Now the viewing triangle constraint is stated as follows.

152 Final Technical Report

Observation 1 : Viewing Triangle Constraint The space confined within a
viewing triangle is free space.

This viewing triangle constraint is used to verify whether two adjacent vertical
lines are on the same surface and make a vertical surface. Before explaining how to
use the viewing triangle constraint for verification, we describe how to find adjacent
vertical lines. First, a vertical line is found in a 2-D image, and the verticality of the
vertical line is checked with its 3-D information. Moreover, The vertical line should
be also taller than a robot because they are assumed to be boundary vertical segments
of vertical surfaces that are taller than a robot. Then, for the vertical line, an adjacent
vertical line, which also satisfies the above conditions, is searched for in the image.

After finding two adjacent vertical lines, we collect segments between them. Col-
lecting such segments is done by simply checking column coordinates of segments. Be-
cause a vertical segment has the same row coordinate value along the column
coordinate, its column coordinate can represent its location in the image. Therefore,
segments are collected into a vertical slice made by the two adjacent vertical lines if
column coordinates of the segments are located between column coordinates of the
two adjacent vertical segments. The segments are then categorized into three groups:
coplanar, inhibition, and irrelevant segments.

• coplanar segments : The segments that are coplanar with the hypothesized ver-
tical surface made with two adjacent vertical lines.

• inhibition segments : The segments that are either behind or across the hy-
pothesized vertical surface

• irrelevant segments : The segments that are in front of the hypothesized verti-
cal surface.
When the presence of the surface is verified, the verification is done conserva-

tively to prevent the robot from hitting obstacles. When the robot misses a real wall,
it collides with it. Making an imaginary wall only reduces free space, and the reduced
free space can be expanded by the following image sequence. Therefore, we presume
that there is a wall unless there is evidence of nonexistence of the wall. The evidence
comes from the segments in its vertical slice.

The viewing triangle constraint generated by coplanar segments helps two ad-
jacent vertical lines make a vertical surface. However, the viewing triangle constraint
generated by inhibition segments prevents the two adjacent vertical lines from mak-
ing a vertical surface. As the name suggests, irrelevant segments do not affect the
making of a vertical surface with the two adjacent vertical lines. Thus verification of
presence of a vertical surface for two adjacent vertical lines is done by checking if
there are inhibition segments between the two adjacent vertical lines. This verifica-
tion using inhibition segments leads the following observation.

Observation 2. Verification with viewing triangle constraint Two adja-
cent vertical lines can make a vertical surface if the surface does not violate the viewing

Final Technical Report 153

triangle constraint generated from the segments between the two adjacent vertical
lines.

9.2.4 Stability constraint

We introduce perceptual grouping to extend surfaces that are missed by the re-
construction using the viewing triangle constraints. Although much research has
been done on grouping for surface reconstruction both in 2-D and 3-D, the research
has tried to group surfaces by hypothesize-and-test methods with geometric proper-
ties. One drawback of this approach is that it requires a lot of computation. Therefore,
it is not practical for robot navigation where an important concern is real time navi-
gation. We try to achieve speed by searching small areas with the help of the stability
constraint. Before explaining grouping, we describe the stability constraint. Then we
describe the cases when perceptual grouping is necessary, and the perceptual group-
ing to extend surfaces.

The stability constraint is described as follows.

Stability constraint Every object must be stable with respect to gravity.

Pin-like objects, such as vertical segments, tend to fall down unless there are
some supports. Conversely, if there is a vertical segment, then there are supports for
it. The supports can be any segments adjacent to the vertical segment, which can keep
the vertical segment vertical. In an indoor environment, the vertical segments are as-
sumed to be side ends of vertical surfaces. Thus the supports are the segments that
are adjacent to the end points of the vertical segments and are either on a stable plane
or beneath a stable plane. Figure 9.4 illustrates the supports for a vertical segment.

Grouping segments of the same vertical surface is necessary when one of our as-
sumptions is loosely preserved. A basic assumption of reconstructing a vertical sur-
face is that both vertical end lines for the surface are visible, but that assumption is
not always true. The missing end line occurs in cases of clipping or occlusion. The clip-
ping case occurs when a wall is so large that entire wall is not covered in an image.
In the second case, a wall is occluded by other vertical objects, such as a cabinet, so
that vertical lines of other objects locate between the two vertical lines of the wall.
These two cases cause missing vertical surfaces.

The missing surfaces can be extended if there is a support. When there is more
than one support, the farthest support line is selected among them. The support and
the vertical line can make a vertical surface if the surface hypothesized by them does
not violate the viewing triangle constraint. For easy implementation of the verifica-
tion, a ghost vertical line is introduced. The ghost vertical line for a vertical line is an
imaginary vertical line that is located at the end point of a support line of the vertical
line. The ghost vertical line for the clipping case is made when vertical segments are
collected, while the ghost vertical line for the occlusion case is made when a vertical
slice has inhibition segments. After finding a ghost vertical line, the vertical slice

154 Final Technical Report

Support

c
E

>

2

%^JSupport

Support Support

Figure 9.4 The supports for a vertical segments

made by a vertical line and its ghost vertical line does the same verification as ordi-

nary vertical slices do.

9.2.5 Algorithm for making the s-map

The algorithm for making the s-map is in two steps: segmentation of an image
into vertical slices, and verification of vertical surfaces for the vertical slices while
mapping smaller objects into the s-map. The first step is further divided into three
modules: collecting vertical segments taller than a robot, dividing the image among
vertical slices according to the collected vertical segments, and distributing other seg-
ments among the vertical slices. The algorithm for making a s-map is summarized in
Figure 9.5 . The details of the algorithm are given below.

In the first step, we first collect vertical segments including ghost vertical lines.
Next, we divide an image into vertical slices according to the vertical segments. Fi-
nally, the remaining segments, such as nonvertical segments and the vertical seg-
ments smaller than a robot, are distributed among the vertical slices. While being
distributed, the segments are categorized into three groups: inhibition segments, co-
planar segments, and irrelevant segments. Each segment is distributed among those
vertical slices that lie in between the begin and end points of the segment.

At the second step of making an s-map, we verify the presence of the vertical sur-
face hypothesized by a vertical slice while mapping possible obstacles into the s-map.
If there are no inhibition segments, a vertical surface is presumed existing. Other-
wise, a support for a vertical segment is searched for. In the case, where no support
for the vertical segment is found, no further attempt is made to find a partial vertical
surface. In the other case, where a support for a vertical segment is found, a partial

Final Technical Report 155

c
B

A

1 o 2

0
D

T3\
/ \E A B C D =E

a) Edges b) Vertical lines

Figure 9.6 Examples of making an s-map

c) S-map

vertical surface is hypothesized with the support and the vertical segment. The hy-
pothesized vertical surface is verified using the viewing triangle constraint, that is, if
there is no inhibition segment for the surface hypothesized, the surface is presumed
existing.

While verifying the presence of a vertical surface, the segments smaller than the
robot are mapped to an s-map by simply dropping height information because the ro-
bot can see the boundaries of the top surfaces as described in section 9.2.2.

One example of making an s-map is shown in Figure 9.6 -a, b, and c. One edge
image for an indoor scene is given in Figure 9.6 -a. In this figure, we assume that A,
B, C, and D are vertical lines and that segments group 1, 2, and 3 are coplanar seg-
ments, inhibition segments, and irrelevant segments, respectively. First, this image
is segmented. From this image, we can make vertical slices according to vertical lines
A, B, C, D, and E. E is a ghost vertical line. Figure 9.6 -b shows the vertical lines. Now
other segments are distributed among vertical slices. Segment groups 1 and 3 are dis-
tributed into the slice made with B and C, and segment group 2 is distributed into the
slice made with C and D. While distributing the segments, we classify the segments
into one of three groups: coplanar, inhibition, and irrelevant groups. At the second
step, verification is done. The slice made from A and B reconstructs a vertical surface
because there are no inhibition segments, and then the vertical surface is mapped to
an s-map. Similarly, the slice made from B and C is mapped to the s-map while seg-
ments group 3 is mapped to the s-map because the segment group 3 can be an obstacle
for the robot. However, the slice made from C and D cannot form a vertical surface
because there are inhibition segments that constitute segment group 2. Instead, the
segment group 2 is mapped to the s-map because it can block the movement of a robot.
The slice made from D and E is mapped to the s-map because there are no inhibition
segments. The s-map of Figure 9.6 -a is shown in Figure 9.6 -c.

156 Final Technical Report

1) Segmentation of an image

a) We collect vertical lines taller than the robot.

b) The image is segmented into vertical slices according to the vertical lines.

c) Other segments are distributed among the vertical slices. The segments in a slice are
categorized into the three groups: coplanar, inhibition, and irrelevant groups.

2) Verification and mapping

a) In each slice, the validity of the hypothesized vertical surface is checked in terms of
the viewing triangle constraint.

If the vertical surface is valid one

then the surface is squeezed into the s-map.

else a support for a vertical segment is searched for.

If there is a support

and the surface made by the support

and the vertical is a valid surface

then the surface is squeezed into

the s-map.

b) While the validity of a vertical surface is decided, the segments in its slice are
squeezed into an s-map if they can block robot movement.

Figure 9.5 Algorithm for building a s-map

9.3 Discussion of the s-map
9.3.1 Complexity of the s-map

The s-map algorithm is analyzed for its complexity. Let's assume that there are
n matched segments in an image. Selection of vertical lines takes 0(n), and dividing
the image needs sorting of the vertical lines. Let the number of vertical lines I and the
number of columns c. Because vertical lines have the same column coordinate, the
vertical lines can be sorted by a bucket sort method where buckets are image columns.
Thus the complexity of sorting is 0(max(l,c)). Now nonvertical segments are distrib-
uted among slices. They are distributed to those slices that the nonvertical segments
straddle. These slices are simply the slices lying between the column coordinates of
their end points. The worst case is that all nonvertical segments straddle all vertical
segments, where the complexity is 0(1 x (n-l)). The maximum of this complexity occurs
when I is nl 2. Therefore, the worst case complexity is 0(n2). In real cases, most non-
vertical segments straddle less than three vertical slices and the number of vertical
slices is less than ten because the number of walls and tall objects is small in indoor

Final Technical Report 157

environments. Thus we estimate the complexity to be 0{n) in real cases though a
much deeper analysis is necessary. Finally, the complexity of the verification algo-
rithm is the same as that of distribution. The complexity of s-map is 0(n2) in worst
case, and 0(n) in real cases.

The run time of the making the s-map from reconstructed 3-D segments was
about one tenth of a second in our experiments. The algorithm was run in the Sun
Sparestation 10. The algorithm is currently programmed in Lisp. Moreover, the cur-
rent program is not an optimized one. Thus the run time can be reduced by optimizing
it. In addition, the run time can be further reduced by mutiprocessors because each
slice can be verified independent of the other slices.

9.3.2 Reliability of the s-map

Graceful degradation is one of the important aspects for vision algorithms be-
cause vision algorithms deal with real pictures whose quality varies according to en-
vironmental changes. For the s-map algorithm, there are two places where errors
come in: Edge detection and matching. In edge detection, the most common errors are
missing edges, shortened or broken edges, and mislocated edges. These errors affect
the performance of not only matching but also the s-map algorithm. In matching,
common errors are wrong matches, missing matches, and shortened matches. From
these two levels of errors, the s-map algorithm suffers from four kinds of errors: par-
tial matches, missing matches, mislocated matches, and wrong matches. For these
four cases, the reliability of the algorithm is explored.

In the first case, partial matches do not affect taller object surfaces, but shrink
smaller object surfaces when the partial matches are segments of top surfaces. In re-
constructing a vertical surface, the necessary information constitutes locations of ver-
tical lines and coplanar segments, as described in section 9.2.4. Therefore, partial
matches do not degrade the algorithm of reconstructing vertical surfaces. In recon-
structing the smaller objects, only segments of top surfaces are necessary. Thus only
partial matches of top surfaces shrink smaller objects. The shrunk surfaces may be
extended by grouping the top surfaces. However, such extensions are not necessary in
most navigation problems because the shrunk portion of an object is relatively small
and does not cause problems for a robot to plan a path with the shrunk object.

In the second case, missing matches can degrade the s-map algorithm more se-
verely. For simple analysis, we assume that every surface is a quadrilateral. For taller
objects, even two missing matches are tolerable if they are nonvertical lines. In the
case of missing either of the two vertical lines, the shrunk vertical surface can be re-
constructed if there is a support. For smaller objects, missing those matches that are
not top surface boundaries does not degrade the algorithm of the s-map at all because
top boundaries represent the location of the objects in the s-map. Missing some of top
boundaries means that an object is shrunk. Even in the case where only one of the top
boundaries is detected, the location of the object can be still known.

158 Final Technical Report

Finally, both mislocated matches and wrong matches show the same error pat-
tern because both of them generate a 3-D segment having wrong 3-D information.
They cause more damage to taller objects if they are vertical lines of the taller surfac-
es. They shift location of the vertical surfaces. However, for smaller objects, they do
not affect the location of the object. They just place themselves in wrong locations be-
cause the s-map does not make surfaces by combining boundary lines of smaller ob-
jects, and may prevent two adjacent vertical segments from making a vertical surface
when the wrong matches become inhibition segments of them.

9.3.3 Advantages and disadvantages of the s-map

The advantages of the s-map are fourfold: Making the map is very simple. The
map is directly made from 3-D segments, so it is not necessary to reconstruct a 3-D
open space. The second advantage is that the s-map itself is a navigable map. There-
fore, we do not have to cut a 3-D space to find a navigable map. In conventional meth-
ods [157,151], it is very difficult to find a cutting height level of a 3-D space for
navigation. Since a reconstructed 3-D space is produced by visible line segments and
the lower part of objects may be invisible, the reconstructed 3-D space could be too
conservative at the lower level of a navigation environment so that only small free
area is available for navigation. Thus, finding a cutting level is a compromise between
area of navigable space and safety. Therefore, deciding the cutting level is difficult.
Thirdly, the s-map represents the environment more realistically and completely with
relatively few 3-D segments. This comes from the utmost use of characteristics of in-
door environments, which are embedded in the viewing triangle constraint and the
stability constraint. Finally, the s-map can turn many 3-D problems in navigation into
2-D problems, for example, path planning and map fusion. Therefore, many naviga-
tion problems can be solved efficiently. The disadvantage of the s-map is that wrong
matches may prevent two adjacent vertical segments from making a vertical surface
when the wrong matches become inhibition segments.

9.4 Results
We have tested the s-map in indoor environments, such as corridors and labora-

tories. Moreover, our robot has successfully navigated corridors in our building by rep-
resenting the corridors with the s-map [155].

In this paper, we present the s-maps for two laboratory image frames and one
corridor image frame, which are illustrated in Figure 9.8, Figure 9.11 , and
Figure 9.14 . As we can see in these s-maps, the accuracy of the s-maps depends on
the accuracy of the reconstructed 3-D segments. Therefore, a more accurate s-map
can be acquired with more accurate the reconstructed 3-D segments. This depends on
accuracy of a stereo system.

Figure 9.1 shows an image frame for a laboratory. Moreover, Figure 9.1 dis-
plays matched segments of the Figure 9.1 . Now vertical segments are selected.
Figure 9.7 illustrates the selected vertical segments. Among the vertical segments,

Final Technical Report 159

Figure 9.7 Vertical segments of Laboratory 1

Figure 9.8 S-map of Laboratory 1

the vertical segment 7 is a ghost vertical segment made by the support of the vertical
segment 6. Then the verification and the mapping are done. The locations of two
walls, a box, and a cabinet are successfully represented in the s-map. Moreover, the
right wall is extended with the vertical and its support: Segment 1 and Segment 2 in
Figure 9.1 . Similarly, the left wall that is between the cabinet and the door, is also
extended with the vertical segment and its support: Segment 12 and Segment 10 in
Figure 9.1 .

Figure 9.9 shows an image frame for a laboratory. Moreover, Figure 9.10 dis-
plays matched segments of Figure 9.9 . The s-map is given in Figure 9.11 . The loca-
tions of a desk, an air conditioner, and a cabinet are represented in the s-map. A wall
behind the desk is also represented in the s-map. Moreover, front part of the cabinet
is extended with the vertical segment and its support: Segment 37 and Segment 35 in
Figure 9.10 . Similarly, the air conditioner is also extended with the vertical segment
and its support: Segment 23 and Segment 22 in Figure 9.10 .

160 Final Technical Report

*^BS'

a) Image 1 b) Image 2

Figure 9.9 Laboratory 2

c) Image 3

Figure 9.12 shows an image frame for a corridor. Moreover, Figure 9.13 dis-
plays matched segments with the s-map given in Figure 9.14 . Two walls of the corri-
dor and one wall at the end of the corridor are represented. Moreover, two traffic cones
are successfully represented.

9.5 Conclusion
In this paper, we introduced a new representation of an indoor environment, s-

map, which can represent the location of obstacles in a planar map. The obstacles are
defined as any objects that can block robot movement. The s-map utilizes the viewing
triangle constraint and the stability constraint. These constraints provide both effi-
cient validation of the vertical surface hypothesized by two adjacent vertical lines and
efficient grouping of the partial vertical surface having a single vertical line. The s-
map is made by mapping the 3-D segments of smaller objects and verified vertical sur-
faces into a planar map. The mapping is done by dropping height information of the
3-D segments or the vertical surfaces. Therefore, this mapping allows the s-map to be
made directly from 3-D segments without reconstructing a 3-D open space and to rep-
resent obstacles in a planar map that is a navigable map for the robot moving in a
plane. In addition to the efficient map making, the s-map transforms many 3-D prob-
lems in navigation into 2-D problems because it represents objects in 2-D domain.
However, the s-map is applicable only in limited environments because it assumes flat
horizontal floors and vertical walls, and it degrades when there are wrong matches
becoming inhibition segments. Our future effort will be directed toward extending the
s-map for more complex environments and adding robustness in validating vertical
surfaces against wrong matches becoming inhibition segments.

9.6 References for Chapter
[147]N. Ayache. Artificial Vision for Mobile Robots. The MIT Press, 1991.

Final Technical Report 161

J£

A /I

/-

a) Image 1 b) Image 2 c) Image 3

Figure 9.10 Matched segments for Laboratory 2

Figure 9.11 S-map for laboratory 2

HHI

■
a) Image 1 b) Image 2

Figure 9.12 Corridor Scene

c) Image 3

162 Final Technical Report

„
V9 V / „ \

-2 ^42

-4e ^s^i ,s "
33

37 j i
36

M 19
1

 IX _1

h ^ r\
[/-^ / W

/
A'
9 /

3 \23

,A\

Viag Vi /a

_2

29

-4B

i6

 13.

11

4»
15

1
_ie

i

z1

33

r 0 %

\\j9 124
«\ 1 23-

■"" ,\-?f-

IV.MOI

-3J-\\

a) Image 1 b) Image 2 c) Image 3

Figure 9.13 Matched segments for Corridor

 H---j---r-'4|*- | : rl-l-H

::j:h+|4t-*-.|." :i |"~it-H

Figure 9.14 S-map for Corridor

[148]N. Ayache and F. Lustman. Fast and reliable passive trinocular stereovision. In
Proceedings of the IEEE International Conference on Computer Vision, pages
422-427, London, England, June 1987.

[149] J.D. Boissonnat, O.D. Faugeras, and E. L. Brass-Mehlman. Representing stereo
data with the delaunay triangulation. IEEE Int. Conf. on Robotics and Automa-
tion, 1988.

[150]D. Braunegg. Marvel: A system that recognizes world locations with stereo.
Procs. of Int. Conf. on Computer Vision and Pattern Recognition, 1991.

[151]E. Bruzzone, M. Cazzanti, L. De Floriani, and F. Mangili. Applying two-dimen-
sional delaunay triangulation to stereo data interpolation. European Conference
on Computer Vision, 1992.

[152] J. F. Canny. A computational approach to edge detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 8(6):679-698, November 1986.

Final Technical Report 163

[153]Y. Chen and G. Medioni, "Object Modelling by Registration of Multiple Range
Images," International Journal of Image and Vision Computing (TVC),
10(3)145-155, April 1992.

[154JC.-K. R. Chung and R. Nevatia. Recovering building structures from stereo. In
Proceedings of the IEEE Workshop on Applications of Computer Vision, Palm
Springs, CA, December 1992.

[155JD. Kim and R. Nevatia. Indoor navigation without a specific map. Intelligent
Autonomous Systems, 1993.

[156]D. J. Kriegman, E. Triendl, and T. 0. Binford. Stereo vision and navigation in
buildings for mobile robots. IEEE Trans, on Robotics and Automation, 5(6), De-
cember 1989.

[157]E. Le Bras-Mehlman, M. Schmitt, 0. D. Faugeras, and J. D. Boissonnant. How
the delaunay triangulation can be used for representing stereo data. Procs. of
Int. Conf. on Computer Vision, 1988.

[158]R. Mohan and R. Nevatia. Using Perceptual Organization to Extract 3-D Struc-
tures. IEEE Transactions on Pattern Analysis and Machine Intelligence,
11(11):1121-1139, November 1989.

[159]H. P. Moravec. Obstacle Avoidance and Navigation in the Real World by a Seeing
Robot Rover. PhD thesis, Stanford University, Stanford, California, September
1980. Technical Report AIM-340 and STAN-CS-80-813.

[160]M. H. Soldo. Reactive and preplanned control in a mobile robot. Procs. of Image
Understanding Workshop, 1990.

164 Final Technical Report

10 A Method for Recognition and
Localization of Generic Objects for

Indoor Navigation
Dongsung Kim and Ramakant Nevatia

We introduce an efficient method for recognition and localization of generic ob-
jects for robot navigation, which works on real scenes. The generic objects used in our
experiments are desks and doors as they are suitable landmarks for navigation. The
recognition method uses significant surfaces and accompanying functional evidence
for recognition of such objects. Currently, our system works with planar surfaces only
and assumes that the objects are in a "standard" pose. The localization and orienta-
tion of an object are represented with the most significant surface in an "s-map." Some
results for laboratory scenes are given.

10.1 Introduction
Our goal is to provide visual capabilities for a robot to navigate in indoor envi-

ronments such as an office building. For this, not only must the robot be able to sense
the objects in its environment for the purpose of obstacle detection but also recognize
some of them to be used as landmarks for navigation. One approach to this task could
be to provide a detailed map of the objects and structures in the environment to the
robot. This allows conventional model-based object recognition techniques to be used
for landmark detection and path planning. This strategy, however, has several limi-
tations. First, the objects and their arrangement in an indoor setting are constantly
changing. Even normally stationary objects, such as furniture, may be moved occa-
sionally. Also, providing detailed geometric models for all objects even in a single room
can be a very difficult and tedious task. When a common object, such as a desk, is re-
placed by another one, completely new models may have to be provided even if the two
objects serve similar functions.

To overcome these difficulties, we propose to represent the objects and structures
by some generic models. This enables the objects to be recognized as belonging to a
certain class without having to also determine which specific one. Such generic mod-
eling allows the robot to navigate in environments without knowledge of the specific
instances or their locations.

An example of a scene that the robot must handle is shown in Figure 10.1. The
robot may be asked to use a desk as a landmark and to pass through a door after the
desk. We only wish to provide generic descriptions of the room and the objects to the
robot. A room can be thus characterized by horizontal doors and vertical walls that

Final Technical Report 165

may have doors. The room may consist of objects, such as desk, whose generic prop-
erties are known to the robot, but also other unknown objects which can not be used
as landmarks but nonetheless must be avoided during navigation. In this paper, we
will focus only on the recognition of the generic classes.

(a) Image 1 (b) Image 2

Figure 10.1 Door 1

(c) Image 3

Little research has been done on recognition of generic classes of objects in com-
puter vision. It is somewhat difficult to precisely define the notion of a generic class,
but it surely excludes precise geometric models. The most generic representation of
an object is probably in terms of its functionality. Thus, concept of a door is that of an
opening allowing passage of objects and a means of closing this opening. The concept
of a desk is that of an object that allows a human to place objects on it and work on
them in a comfortable posture. The inference of such high level functionality from real
images is, however, quite difficult. Some attempts have been made towards this [Star-
Bowy91], but these systems do not take images as inputs. In early work, Tenenbaum
and Garvey [Garv-Tene74,Tene73] attempted to recognize objects in an office scene by
using point properties; however, such properties are not sufficient to distinguish
among complex objects in a complex scene, in general. Another approach is to view
various instances of a class as generated by varying parameters of a parametric rep-
resentation. Parametric representations have been studied by several researchers
[Broo83,Grim89,Lowe87,Marr-Nish77,Neva-Binf77], however, such approaches do
not naturally capture the common variations found in everyday objects such as desks.

In this paper, we propose an approach of representing objects by their significant
surfaces and by relations among them, which we believe is sufficiently general for rec-
ognizing common objects in an indoor environment and can work with real scenes.
Significant surfaces are chosen based on their functional role. A desk is thus charac-
terized by a working surface and some surfaces that correspond to the support struc-
tures, that is "legs." The working surface is characterized by some properties, such as
a range of sizes and heights. Besides the observation of surface properties, the surfac-
es can also be observed by their function, for example, a working surface of a desk
could be inferred by the objects placed upon it; we call such evidence as the functional

evidence. Such a representation can allow us to recognize several instances of desks,
not all similar in shape and construction, and not necessarily seen previously, in a ro-
bust and efficient manner.

The method is robust because significant surfaces aid in detection of the other
significant surfaces. A significant surface can confine a domain of another significant
surface. The confined domain allows the system to recover a missed significant sur-

face.

Our current system makes two major assumptions. First, it deals with only pla-
nar surfaces. Objects with non-planar surfaces must have sufficient planar surfaces
to be recognized. Second, it assumes that an object is in a "standard" pose. A standard
pose of an object is the one in which the object is usually found in its natural environ-
ment. This standard pose allows the systems to recognize objects efficiently. For ex-
ample, a desk is expected to be placed with its working surface horizontal.

Currently, our system has models for only two classes of objects: doors and desks.
We believe that these are sufficient as landmarks for navigation in many office and
laboratory environments. Moreover, we believe that our approach can accommodate
a wider range of objects easily.

A block diagram of our system is given in Figurel0.2. Note that we do not auto-
matically infer significant surfaces from functional descriptions; this translation is
currently done by the programmer.

Object

T
Functional representation

I
Surface representation

ZE:

I
Functional evidence

1
Primitive representation

Images

Figure 10.2 Overview of the recognition system

The input to our system is from three cameras arranged to perform trinocular
stereo and mounted on a Denning mobile robot. We perform stereo matching on linear
line segments detected from the three images. Our matching method is described in
detail in [Kim-Neva93] and is similar to one developed at INRIA [Ayac91] but incor-
porates important junction information. Note that this essentially provides a sparse
set of 3-D segments and a somewhat larger set of 2-D segments for the robot to at-
tempt its recognition from.

Detection of the significant surfaces from 2-D and 3-D segments is basically done
using perceptual grouping. The detection utilizes the four primitives of the surfaces:
orientation, height, shape, and size. The orientation and height are used to reduce
search space while the shape and size are utilized for perceptual grouping. Shape of
a significant surface may vary for a generic object. Such varying shapes can be detect-
ed with help of other significant surfaces. For example, a round desk top surface can
be detected with help of legs. The details are described in Section 10.4.

Localization of an object in our system is represented in an s-map. The s-map is
defined as a map that represents the locations of the visible 3-D surfaces of obstacles
in a 2-D space, where 2-D consists of width and length coordinates but does not in-
clude a height coordinate. Obstacles are defined as objects that can block the move-
ment of the robot. The s-map is made efficiently from 3-D segments. Further details
can be found in [Kim-Neva94].

Section 10.2 explains the significant surface of an object and its primitives. Per-
ceptual grouping for the significant surface is also investigated. Section 10.3 describes
recognizing and localizing doors. Section 10.4 resents recognition and localization of
desks. Section 10.5 analyzes the recognition system. Finally, Section 10.6 concludes
this paper.

10.2 Significant Surface Representation

Significant surfaces follow from the functions that an object performs. Note that
one surface may serve several functions whereas a single function may require pres-
ence of several surfaces. For example, for a desk, the function of being able to work at
a comfortable heights requires a table top within a certain height range as well as
some legs for support.

We order the significant surfaces by how essential they are to the functions that
they enable. For a desk, we consider the top surface to be more significant than the
legs. For an object to be recognized, its most significant surface must be detected.

10.2.1 Primitives of a Significant Surface

A significant surface in a standard pose can be characterized by the four primi-
tives: orientation, range of heights, shape, and size. The orientation and height are
decided by the standard pose while the shape and size are determined by the signifi-

cant surface itself. The orientation and height can reduce the number of candidate
segments for perceptual grouping to find the surface having the shape and size.

• Orientation: a significant surface of an object has a fixed orientation relative to
a horizontal plane in standard pose. For example, a desk top is horizontal.

• Range of height: all the points in a significant surface are within a certain
range in terms of their heights above the floor. For example, desk legs have a
height range of between zero and 1 meter above the floor.

• Shape: shape of a significant surface may be given in general form. For in-
stance, desk tops generally have a rectangular shape. However, we may be able
to detect desk with non-rectangular shape also, based on evidence provided by
legs and objects supported on it.

• Size: size of a significant surface of an object is within a certain range. For ex-
ample, a desk top should have an appropriate size for a human to work on.

10.2.2 Perceptual Grouping to Detect a Significant Surface

Perceptual grouping is used to find a significant surface from 2-D and 3-D seg-
ments. The candidate segments can be limited using orientation and height primi-
tives of the significant surface. Perceptual grouping for the significant surface varies
depending on its shape. Thus the details of perceptual grouping for each significant
surface are explained in the related sections.

In perceptual grouping, 2-D information as well as 3-D information is utilized.
This can reduce grouping errors caused by matching errors. The loss of information
caused by missing matches and/or partial matches may be recovered using 2-D seg-
ment information in two ways. First, missing matches hinder two less meaningful
features from becoming a more meaningful one because of lost information. Such lost
information can be recovered if there are 2-D segments that can support the mean-
ingful feature. For example, a rectangle with a 3-D U-shape can be classified as a rect-
angle with higher confidence if it has 2-D segments that can make the U-shape a
rectangular shape. Second, partial matches may prevent two less meaningful fea-
tures from being grouped into a more meaningful feature when proximity of two fea-
tures is used as one criterion. The partial matches may lose adjacent portion of two
less meaningful features, and prevent them from being a more meaningful feature.
This error can be overcome if 2-D segments in addition to 3-D segments are used in
checking the proximity of two features.

10.3 Recognition of Doors
A door has some functions. The most significant function is for a human and oth-

er objects such as furniture to pass through. This decides the most significant surface,
a door frame. Another significant function can be separation of space when the door
is not used as a passage. This determines another significant surface, a door panel. In
addition to these significant surfaces, a door may be supported by functional evidence.

The functional evidence consists of objects seen through a door when it is open. This
information helps to decide that the detected door is not a simple drawing but a real
door.

First, detecting a door frame as the most significant surface is described. Then
detecting a door panel as another significant surface is explained. Next, detecting
functional evidence is explored. Finally, the results of detecting doors are illustrated.

10.3.1 Detecting a Door Frame

Adoor frame can be characterized by the following four primitives: a vertical ori-
entation, a height range between a floor and 2.5 meters above the floor, a rectangular
shape, and passable size. The orientation and height reduce search space for candi-
date segments. The shape and size decide a perceptual grouping method to detect the
door frame from the candidate segments.

A door frame has three components: top bar, left pole, and right pole. A door
frame can be detected by finding a U-shape consisting of the top bar, the left pole, and
the right pole.

Candidate segments for top bars, left poles, and right poles are searched in a limited
space as described below. The candidate segments are then grouped into door frames.
The details of collecting candidate segments and perceptual grouping are described

below. In addition, the algorithm to detect door is summarized in Figure 10.3.

1. Collect possible top bars
2. Collect left and right poles
3. Hyphothesize doors

If there is a top bar
then hypothesize a door with a top bar, left pole, and right pole
else hypothesize a door with a left pole and right pole

if there is a 2-D top bar between them
4. Verify a door

3-D validation with distance and alignment
2-D validation with distance

Figure 10.3 Algorithm for detecting a door frame

Candidate segments are efficiently collected using orientation and size primi-
tives for the three components described above. The orientation and size confine the
search space of the candidate segments to vertical surfaces whose height is between
a floor and 2.5 meters above the floor. A top bar should be a horizontal line of sufficient
length and height, so that a human can pass under the top bar. Poles should be ver-
tical lines that are high enough for a human to pass, and the distance between the
two poles should be wide enough so that a human can pass. First, collecting possible
top bars are explained. Collecting possible poles are then explored.

Possible top bars are collected from matched segments. A segment can be a pos-
sible top bar if it has sufficient height and width. While checking the length of a

matched segment, shrunk 3-D segments due to partial matching can be recovered by-
considering what portion of 2-D segments are used in reconstructing the 3-D segment.

Left and right poles have the same characteristics in terms of primitives. The
poles are also collected among matched segments. A vertical segment can be a possi-
ble pole if it is high enough.

Now top bars and poles are perceptual grouped into U-shapes. If top bars of all
doors are assumed to be detected, then hypothesizing doors is relatively simple. How-
ever, the assumption is not always true. Thus missing a top bar should be considered
when hypothesizing doors.

When a top bar is available, a door is hypothesized with a left pole, a top bar, and
a right pole. The right pole is in the scope of the top bar. The right pole in the scope of
a top bar is a pole below the top bar in an image.

When a top bar is unavailable, a door is hypothesized only with a left pole and a
right pole. The right pole is next pole to the left pole. In addition, the distance between
them is sufficient for a door. The poles should have a 2-D top bar bridging them. If so,
a door is hypothesized with the top bar and two poles.

After hypothesizing a door frame, the door frame is verified with its 2-D and 3-
D information. As a 3-D validation, distance and alignment are verified. The distance
gap between an end point of a top bar and each pole should be within a threshold val-
ue. Moreover, Three components of a door frame should be aligned to a single line in
an s-map because they are aligned to a single line at the top view. As a 2-D validation,
the distance gap between each end point of a top bar and an upper end point of each
pole should be within a threshold value. These verification criteria are also used in
selecting a door frame among those hypothesized door frames sharing the same top
bar, which can be generated when a door frame has more than two distinct poles. For
example, a door frame having two door panels can have more than two distinct poles
if a center pole is detected.

10.3.2 Detecting a Door Panel

A door can have several panels. When a door is closed, it is difficult to distinguish
panels from a door frame. However, detecting a door panel is easier when a door is
open. The panel is attached to a door frame and has a rectangular shape. In the cur-
rent implementation, our system tries to detect a door panel only when a door is open.
The opening of a door is decided using functional evidence described in Section 10.3.3.
Detecting a door panel helps to detect a door.

Detecting a door panel is similar to detecting a door frame except that the door
panel should be attached to the door frame. Searching for a door panel is done near
two poles of the door. After finding an horizontal segment reaching a corner of the door
frame, a vertical line reaching the horizontal segment is found. With this horizontal

line and the vertical line, a door panel is hypothesized. The same verification used in
door frame verification is applied to verify a door panel.

10.3.3 Finding Functional Evidence

When a door is open to pass, its opening gives functional evidence that consti-
tutes objects seen through the opening. Thus detecting objects inside a door helps to
detect the door. To acquire this functional evidence, we collect segments inside a door
frame. Then the segments are checked if they are behind the door by a minimum dis-
tance set by expected accuracy of depth determination from the viewpoint of the robot.
If so, functional evidence for a door is claimed to be achieved. Moreover, these seg-
ments behind the door mean that the door is open.

When a door is closed, the functional evidence is not available.

10.3.4 Localization of a Door

After a door is found, the location of the door is represented in an s-map for nav-
igation. Representing the door in an s-map is very simple. A vertical line becomes a
point in an s-map because dropping height information of the vertical line renders a
point. Thus the door in the s-map is a line linking two points generated from two ver-
tical poles.

In addition to the location of a door, the facing direction of a door should be
known to the robot so that the robot is able to reach in front of the door. The facing
direction is decided considering locations of both the door and the robot. At first, two
locations, which are perpendicular and a predefined distance away from a door, are
computed. Then one between the two possible locations is selected based on the dis-
tance between the robot and one position. The nearer location is selected because see-
ing an object means that the front part is always nearer than the back part.

10.3.5 Results for recognition of Doors

Figure 10.4-a and 10.4-b illustrate recognition of an open door for an image
scene shown Figure 10.1. In this scene, there are two doors. The right door is open
because it has functional evidence of an open door as described in Section 10.3.3. The
thicker lines in Figure 10.4-a represents an open door. Moreover, the center position
of a door and the front part of a door are represented with small circles bridging the
thin line in Figure 10.4-b

The closed door in Figure 10.1 is also detected, but is not shown here separately.

10.4 Recognition of Desks

A desk has the following significant surfaces: the desk top and the legs. The most
significant surface of a desk is the desk top. Less significant surfaces are the legs. In
addition, evidence of a desk may also be found by detecting the function it performs,
namely of supporting objects on the desk top.

(a) Matches S"maP

Figure 10.4 Open door

10.4.1 Detecting a Desk Top Surface

The most significant surface for a desk is the top surface. The primitives for a
desk top surface are as follows: horizontal orientation, height range between 60 cm
and 90 cm, rectangular shape, and workable size. The size is assumed to be from 40
cm to 2 meters in each side. The shape primitive is loosely preserved. Although the
system tries to detect the rectangular shape, it allows the desk top to be an arbitrary
shape. The desk top is initially detected using perceptual grouping. Then other signif-
icant surfaces are used to detect the desk top correctly.

The detection of a desk top using perceptual grouping can be done in two stages:
collecting candidate segments for a desk top and perceptual grouping for a desk top.
In collecting candidate segments, orientation and height primitives are used to re-
duce the search space. Segments that are both horizontal and 60-90 cm high above
the floor, are collected.

In perceptual grouping, collected candidate segments are grouped into a rectan-
gular shape having workable size. Perceptual grouping is done in four steps: col-
linearization, L-shapes, U-shape, and rectangular shape. In the first step, possible
desk top segments are collinearized based on the angle difference and the gap be-
tween two segments. The gap can be as large as the size of a desk because a large part
of a desk may be occluded by materials on the desk. In the second step, collinearized
lines form L-shapes based on angle and gap between two lines. The angle between two
lines should be perpendicular in 3-D. The gap between two lines should be within a
threshold value. In checking for a gap, a 2-D gap as well as a 3-D gap is also used to
recover errors caused by partial or wrong matches. In the third step, L-shapes form
U-shapes. Two L-shape can make a U-shape if they have a common line and the other
lines have the same direction. Moreover, the size of a U-shape should be large enough
to be a desk. In the final step, U-shapes make rectangular shapes. Two U-shapes can

make a rectangular shape if they have two common lines. The rectangular shape
should be large enough for a human to work on.

The detection of a desk top with help of other significant surfaces is done while
detecting the other significant surfaces. The other significant surfaces can confine the
domain of the desk top. The details are described in Section 10.4.2.

10.4.2 Detecting Legs

Detecting legs of a desk either adds confidence to the desk recognized with a
desk top surface, or can help to detect a desk if a desk top surface is not detected. Miss-
ing a desk top surface occurs when there are no rectangular shapes, U-shapes, and L-
shapes that are large enough because of occlusion by material on the top surface, or
by material in front of the desk. This missed top surface may be recovered by detect-
ing legs. While detecting legs, a domain of a desk top is acquired. The details are de-
scribed below.

Legs have four primitives: vertical orientation, height range between a floor to
the desk top surface, no common shape, and size that does not exceeding the 2-D desk
domain with respect to an s-map. Orientation and height reduce possible candidates
for legs. Then only size primitive is applied to group the candidates. The details of de-
tecting legs are described below. In addition, the algorithm of detecting legs are sum-
marized in Figure 10.5.

1. Collect vertical segments
2. Filter those reaching a desk top surface from the collected segments
3. Select those inside the 2-D domain of a desk from the filtered segments,

(a) Find the 2-D domain of a desk with respect to an s-map
i. Find the 1-D domain for a column coordinate

A. Acquire an initial column domain
B. Collect possible legs inside the initial column domain
C. Confine a more accurate column domain from the collected possible legs.
D. Collect more possible legs inside the more accurate column domain

ii. Find the 2-D domain in an s-map
A. Collect the segments inside the column domain
B. Grow a rectangle containing the collected segments if they are within a reasonable range

(b) Select those inside the 2-D domain

Figure 10.5 Algorithm for detecting legs

Detection of the legs of a desk is done in three modules: collecting vertical seg-
ments, filtering the vertical segments that can reach desk top height, and selecting
the vertical segments inside a 2-D domain of a desk top. Collecting vertical segments
is done by checking vertically of a segment. The second module is easily implemented
by checking 3-D information of vertical segments. The final module needs to find the
2-D domain of a desk with respect to an s-map. After finding the 2-D domain of a desk,
more possible legs are selected as legs if they are inside the 2-D domain of a desk. We
describe a method of finding the 2-D domain of a desk.

Finding the 2-D domain of a desk is done in two steps: finding a column coordi-
nate domain of a desk in an image, and finding the 2-D desk domain in an s-map.

In the first step, a column coordinate domain becomes more accurate when it in-
teracts with legs. The method attempts to acquire an initial column domain. Then the
acquired column domain is used to collect possible legs. Next the possible legs confine
a more accurate column domain. Finally, the more accurate column domain is used to
collect more possible legs. Among these procedures, we describe acquiring an initial
column domain and confining a more accurate column domain because collecting legs
in a column domain can be done simply by checking column coordinates of a segment.

Initial column domain is acquired either from segments at a desk height or from
a detected desk top surface. The initial column domain should contain all the seg-
ments at desk height or segments of the desk top surface.

Confining to a more accurate column domain is done by using a presence row.
The presence row is a single row indicating if a column coordinate of the row is occu-
pied by a desk. This presence row is constructed by dropping the row coordinate of
possible segments of a desk top surface and marking its coordinate as a filled cell.
Thus the region occupied by a desk is marked with filled cells. After making the pres-
ence row, the extra possible legs are selected among all the possible legs using the
presence row. In the presence row, a band of continuously filled cells is considered as
a desk if the band is sufficiently wide. Thus possible legs under such a band become
extra possible legs. Conversely, the band having extra possible legs can be considered
as a desk. Therefore, such band becomes a column domain of a desk.

In the second step, a 2-D desk domain is computed in an s-map represented in
terms of width and depth. A segment with desk top height is collected as a possible
desk top segment if it is inside a column domain computed at the first step. After col-
lecting possible desk top segments, a 2-D desk domain is grown by attempting to con-
tain the desk top segments if they are within a certain range. The growing of a 2-D
desk domain is described below. In constructing a rectangle containing the segments
of a desk, computation time is reduced by transforming segments into another coor-
dinate system. The coordinate system allows checking if a segment is contained to be
easily performed by checking its row and column coordinates. Among all the segments
of a desk top surface, the longest segment is selected as a reference segment. Then
row and column coordinates are rotated so that the reference segment is parallel to
row coordinate. This reference segment generates a desk rectangle of which one side
is made with the reference segment and the other parallel side is made with a small
perturbation of the reference segment. Now other segments are also transformed and
their coordinates are compared to see if they are inside the desk rectangle. If a seg-
ment is not inside the desk rectangle, the desk rectangle is updated so that it can con-
tain the segment unless the segment is too far. Finally, the desk rectangle is inversely
transformed to a world coordinate system.

10.4.3 Finding Functional Evidence

The function of a desk, to work on, can generate functional evidence. When some
objects are on the desk, these provide functional evidence. Thus objects on the desk
can help recognize the desk. The objects on the desk should be inside the 2-D domain
of the desk and reach the desk top.

Detecting materials on a desk top is accomplished in two steps. In the first step,
segments inside a 2-D desk domain are collected. These segments can be efficiently-
collected using 1-D and 2-D filtering. For a 1-D filtering, segments inside the column
domain of the desk are collected. Then the collected segments are further checked if
they are inside the 2-D desk domain in an s-map. In the second step, segments reach-
ing the desk top are selected among segments inside. In the current system, segments
one or both of whose ends reach the desk top are considered as segments reaching the
desk top.

10.4.4 Localization of a Desk

After a desk is found, localization is done in an s-map. Location of the desk is
simply represented in the s-map by dropping height information of the four sides of
the top surface.

In addition to location of a desk, the front direction of the desk should be known
to a robot so that the robot can reach the desk and do some other work, such as getting
a pencil in a drawer. To find the front part of the desk, common posture is utilized. A
desk top has a rectangular shape. Moreover, either of longer sides of the desk top is a
front part of a desk. In common posture, the front part of a desk faces a direction that
is easily accessible. This implies that the front part of a desk is nearer than its rear
part. Now detecting a front part becomes detecting the longer side facing a robot. The
detecting of the front part is accomplished in two steps. At first, longer sides of a desk
are selected. Then the nearer side between the longer sides is selected as the front
part. This selection can be further verified when a robot approaches the desk and ac-
quires more details of the desk front.

10.4.5 Results for Recognition of Desks

Several tens of experiments have been conducted to recognize four different
kinds of desks in many different viewpoints, distances, and settings. Three of the four
desks have a rectangular desk top, but have different shaped legs. One of them has
drawers in both sides. Another has drawers in one side. The other has no drawers.
The desk having a round desk top has only a single leg. The recognition system has
successfully recognized the four desks in the experiments with settings of a monitor
and a chair. The errors in orientation and size were within 20 percent in experiments
done. Results of recognizing desks are given below.

Figurel0.6-a shows an image taken by our robot, Antigone. Detecting significant
surfaces and functional evidence is given in Figure 10.6-b, -c, and -d. Figure 10.6-b

represents a detected desk top surface on top of matched segments. The thin lines are
matched segments. The thicker lines are detected desk top boundaries. The bound-
aries are generated from a U-shape candidate of a desk top surface because the other
side is occluded by a monitor. Figure 10.6-c displays legs under a 2-D desk domain.
The current algorithm to detect legs has loose criteria for deciding whether legs are
reaching to a desk top because self occlusion and partial matches may prevent legs
from reaching to a desk top. Figure 10.6-d illustrates the functional evidence of a
desk. In collecting functional evidence, the current algorithm collects only segments
reaching a desk top. These significant surfaces and functional evidence allow our rec-
ognition system to recognize and localize a desk. The recognized desk is localized in
an s-map in Figure 10.6-e. The front part of the desk is represented with the thin line
and the small circles.

Figure 10.7 displays yet another desk scene. The desk has a monitor on it, and
is occluded by a chair. Figure 10.7-b illustrates detected significant surfaces and func-
tional evidence that are represented as thicker lines. All four boundaries of the desk
top are successfully recovered although front and rear boundaries of the desk are oc-
cluded by a chair and monitor respectively in Figure 10.7-b. Moreover, legs and func-
tional evidence are successfully detected. Figure 10.7-c represents the recognized
desk in an s-map. The front part of a desk is rendered with the thin line and the small
circles.

*

$■■•'"'*
* ?*«^ ;

(a) Image (b) matches

Figure 10.7 DeskB

(c) S-map

Figure 10.8 displays another desk scene. The desk has a monitor on it.
Figure 10.8-b illustrates detected significant surfaces and functional evidence that
are represented as thicker lines. All four boundaries of the desk top are successfully
recovered although rear boundaries of the desk are occluded by a monitor in
Figure 10.8-b. Moreover, legs and functional evidence are successfully detected.

(a) Image
(b) Top

(c) Legs (d) Functional evidence

(e) s-map

Figure 10.6 Desk A

Figure 10.8-c represents the recognized desk in an s-map. The front part of a desk is
rendered with the thin line and the small circles.

Figure 10.9 displays a round desk scene. Figure 10.9-b illustrates detected sig-
nificant surfaces that are represented as thicker lines. As seen in Figure 10.9-b, a part
of the round desk top is detected by perceptual grouping of a rectangular shape. Then,

r r

(a) Image Ob) matches

Figure 10.8 DeskC

(c) S-map

the missed part of the round desk top is recovered with help of legs. Figure 10.9-c rep-
resents the recognized desk in an s-map. The missed part as well as the detected part
is contained in the 2-D desk domain.

K

*

, ft >

;;■

:::;&

(a) Image 0>) matches

Figure 10.9 DeskD

(c) S-map

10.5 Complexity of the Recognition System
The complexity of the recognition system depends on a target object for recogni-

tion. In most cases, the complexity of the recognition system is decided by that of de-
tecting the most significant surface. Because the most significant surface is a key for
recognition and helps to confine domains of other significant surfaces, it should be de-
tected correctly or at least have its domain selected roughly.

In the case of recognizing a door, worst case happens when half the segments are
vertical lines and half the segments are top bars whose scopes are whole images. Then

Final Technical Report 179

0(n2) hypothesized door frames are generated. However, the complexity of detecting
a door frame can be 0(n) in the average case because the scope of a top bar reaches
two vertical lines in most cases. The complexity of other significant surfaces and func-
tional evidence is 0(n). The total complexity for recognizing a door is 0(n) in the av-
erage case or 0(n2) in the worst case.

In the case of recognizing a desk, worst case happens when all segments are desk
top segments. Then generating L-shapes has complexity of 0(n2). Moreover, generat-
ing rectangles from L-shapes also has complexity of 0(n2) in the worst case. There-
fore, the complexity of detecting a desk top is 0(n2) in the worst case. However, we can
reduce candidate segments for a desk top by utilizing natural posture and primitives
of the desk top surface. In most cases, the number of the segments of a desk top is less
than some constant number. These constant number of the desk top segments allows
the system to have the complexity of 0(n). The complexities of other significant sur-
face and functional evidence are also 0(n). The total complexity for recognizing a door
is 0(n) in the average case or 0{n2) in the worst case.

We have analyzed the real computing time for recognition from 3-D segments.
The computing time was measured in tens of laboratory scenes using Sun Sparc sta-
tion 10. Although the current system has been written in Lisp without optimization,
it showed promising results in terms of computing time. For the case of doors in lab-
oratory scenes, the computing time for recognition was less than one hundredth of a
second. For the case of desks in laboratory scenes, the computing time was less than
one tenth of a second. In addition to this computation, the edge detection takes about
40 seconds per image. The matching also needs about 10 seconds. From matched seg-
ments, an s-map is constructed in less than one tenth of a second. Among these, we
estimate that edge detection and matching may be done within a second with parallel
processing at a reasonable cost. Thus we believe that total computing time from im-
ages to object recognition can be less than a second with low level parallel processing.

10.6 Conclusion
We have shown some experiments on generic object recognition of desks and

doors by using representations inspired by their functionality. Some of the evidence
we use is rather weak by itself, however, it suffices in the context in which such objects
are found. We believe that our methodology can also be applied to other large objects
commonly found in offices and laboratories.

10.7 References

[Ayac91]N. Ayache. Artificial Vision for Mobile Robots. The MIT Press, 1991.
[Broo83]R. A. Brooks. Model-based three-dimensional interpretations of two-dimen-

sional images. IEEE Transactions on Pattern Analysis and Machine Intelligence,
5(2):140-150,1983.

180 Final Technical Report

[Garv-Tene74]T. D. Garvey and J. M. Tenenbaum. On the automatic generation of
programs for locating objects in the office scenes. Second International Joint Con-
ference of Pattern Recognition, pages 162-168,1974.

[Grim89]W. E. L. Grimson. On the recognition of parameterized 2d objects. Interna-
tional Journal of Computer Vision, 3:353-372,1989.

[Kim-Neva93]D. Kim and R. Nevatia. Indoor navigation without a specific map. Intel-
ligent Autonomous Systems, 1993.

[Lowe87]D. G. Lowe. Three-dimensional object recognition from single two-dimen-
sional images. Artificial Intelligence, 31:355-395,1987.

[Marr-Nish77]D. Marr and K. Nishihara. Representation and recognition of the spa-
tial organization of three-dimensional shapes. Proceedings of the Royal Society of
London, B(200):269-294,1977.

[Neva-Binf77]R. Nevatia and T. O. Binford. Description and recognition of complex-
curved objects. Artificial Intelligence, 8:77-98,1977.

[Star-Bowy91]L. Stark and K. Bowyer. Achieving generalized object recognition
through reasoning about association of function to structure. IEEE Trans, on the
Pattern Analysis and Machine Intelligence, 1991.

[Tene73]J. M. Tenenbaum. On locating objects by their distinguishing features in
multisensory images. Computer Graphics and Image Processing, 2:308-320,1973.

Final Technical Report 181

182 Final Technical Report

11 List of Publications

Y. Chen and G. Medioni, "Surface Level Integration of Multiple Range Images", in
Proceedings of the Workshop on Computer Vision for Space Applications, Antibes,
France, September 1993.

V. Prasanna, C.-L. Wang, and A. Khokhar, "Low Level Vision Processing on Connec-
tion Machine CM-5," in Workshop on Computer Architectures for Machine Percep-
tion, pp. 117-126,1993.

D. Kim and R. Nevatia, "Indoor Navigation without a Specific Map," in Proceedings
Workshop on Intelligent Systems, Pittsburgh, PA, 1993

H. Rom and G. Medioni, "Hierarchical decomposition and axial shape description," In
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 15, No. 10,
pp. 973-981, October 1993.

H. Rom, Part Decomposition and Shape Description, Ph. D. Thesis, University of
Southern California, December 1993.

C. Liao and G. Medioni, "Surface Approximation of a Cloud of 3-D Points," CAD94
Workshop, Pittsburgh, PA.

P.Havaldar, G.Medioni and F. Stein, "Extraction of Groups for Recognition," in Proc.
ECCV94, Stockholm, May 1994.

M. Zerroug and R. Nevatia, "Segmentation and 3-D recovery of SHGCs from a single
intensity image," European Conference on Computer Vision, Stockholm, May 1994,
pp. 319-330.

Y. Chen and G. Medioni, "Shape Description of Complex Objects from Multiple Range
Images", Proceedings of the IEEE Conference on Computer Vision and Pattern Rec-
ognition, June 1994, Seattle WA., pp.153-158.

M. Zerroug, Segmentation and Inference of 3-D Descriptions from an Intensity Image,
Ph. D. Thesis, University of Southern California, June 1994.

Y. Chen, Description of Complex Objects from Multiple Range Images, Ph. D. Thesis,
University of Southern California, August 1994.

M. Bejanin, A. Huertas, G. Medioni and R. Nevatia, "Model Validation for Change De-
tection," Proceedings of the 1994 ARPA Image Understanding Workshop, Monterey,
California, November 1994.

Y Chen and G. Medioni, "Surface Description of Objects from Multiple Range Imag-
es," in Proc. ARPA Image Understanding Workshop, Monterey, CA, November
1994.

G. Guy and G. M6dioni, "Inferring Surfaces from Sparse 3-D Data," in Proc. ARPA Im-
age Understanding Workshop, Monterey, CA, November 1994.

Final Technical Report 183

D. Kim and R. Nevatia, "A Method for Recognition and Localization of Generic Ob-
jects for Indoor Navigation," in Proc. ARPA Image Understanding Workshop,
Monterey, CA, November 1994.

C. Liao and G. Medioni, "Surface Approximation of Complex 3-D Objects," in Proc.
ARPA Image Understanding Workshop, Monterey, CA, November 1994.

N. Milhaud and G. Medioni, "Learning, Recognition and Navigation from a Sequence
of Infrared Images," in Proc. ARPA Image Understanding Workshop, Monterey,
CA, November 1994.

V. Prasanna and C.-L. Wang, "Image Feature Extraction on Connection Machine CM-
5," in Proc. ARPA Image Understanding Workshop, Monterey, CA, November 1994.

H. Rom and G. Medioni, "Part Decomposition and Description of 3D Shapes," In Proc.
ARPA Image Understanding Workshop, Monterey, CA, November 1994.

M. Zerroug and R.Nevatia, "Three-Dimensional Part-Based Descriptions from a Real
Intensity Image," in Proc. ARPA Image Understanding Workshop, Monterey, CA,
November 1994.

D. Kim, Indoor Navigation with a Generic Map, Ph. D. Thesis, University of Southern
California, 1994.

M. Zerroug and R.Nevatia, "From an Intensity Image to 3-D Segmented Descrip-
tions." in Proceedings of the IEEE International Conference on Pattern Recogni-
tion, Jerusalem 1994.

M. Zerroug and R. Nevatia, "Volumetric descriptions from a single intensity image,"
to appear in International Journal of Computer Vision.

Y.C. Kim and K. Price, "A Feature-Based Monocular Motion Analysis System Guided
by Feedback Information," Submitted to IEEE Trans PAMI, January 1995.

184 Final Technical Report

»

12 Professional Personnel
12.1 Personnel

Professional personnel included Dr. R. Nevatia, Dr. G. Medioni, Dr. K. Price, A.
Huertas, Y. Chen, G. Guy, S. Han, P. Havaldar, D. Kim, M. Lee, C. Liao, H. Rom, M.
Zerroug.

12.2 Ph. D. Graduates
In this contract period we have had 4 Ph. D. graduates:

H. Rom, Part Decomposition and Shape Description, Ph. D. Thesis, University of
Southern California, December 1993.

M. Zerroug, Segmentation and Inference of 3-D Descriptions from an Intensity Image,
Ph. D. Thesis, University of Southern California, June 1994.

Y. Chen, Description of Complex Objects from Multiple Range Images, Ph. D. Thesis,
University of Southern California, August 1994.

D. Kim, Indoor Navigation with a Generic Map, Ph. D. Thesis, University of Southern
California, 1994.

Final Technical Report 185

